
Copyright

by

Jiaqi Gu

2023

The Dissertation Committee for Jiaqi Gu
certifies that this is the approved version of the following dissertation:

Light-AI Interaction: Bridging Photonics and Artificial

Intelligence via Cross-Layer Hardware/Software

Co-Design

Committee:

David Z. Pan, Supervisor

Ray T. Chen, Co-Supervisor

Diana Marculescu

Atlas Wang

Song Han

Light-AI Interaction: Bridging Photonics and Artificial

Intelligence via Cross-Layer Hardware/Software

Co-Design

by

Jiaqi Gu

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2023

Acknowledgments

I would like to express my heartfelt gratitude to my Ph.D. advisor,

Professor David Z. Pan, for his great support and guidance throughout my

academic journey. As a mentor, he has not only been instrumental in shap-

ing my research but has also honed my full-stack skills, ensuring that I am

well-equipped for a successful career in academia. His invaluable insights and

encouragement have been instrumental in every stage of my Ph.D. studies,

and I am truly grateful for the opportunities he has given me to attend con-

ferences, give talks, build connections, co-organize events, and be involved in

proposal writing. Professor Pan’s dedication to research, his warm advice,

and his kind-heartedness will have positive impacts throughout my life in the

future.

I am also deeply grateful to my co-advisor, Professor Ray T. Chen, for

cultivating my passion for photonic computing and for providing great support

throughout my graduate studies. The weekly meetings and interactions with

him have been immensely beneficial, and my academic achievements would

not be possible without the strong support of his research group. I would also

like to thank Dr. Diana Marculescu, Dr. Song Han, and Dr. Atlas Wang, who

played pivotal roles in my Ph.D. dissertation, offering valuable suggestions and

feedback.

iv

I would also like to extend my gratitude to my colleagues who directly

contributed to the research projects that form part of this dissertation. Dr.

Zheng Zhao has been an exceptional guide, offering valuable insights into

hardware-software co-design of optical neural networks and collaborating with

me on multiple projects. Dr. Zhoufeng Ying has provided critical suggestions

with his expertise in optics and hardware design. I am also grateful to Cheng-

hao Feng, my close collaborator, whose expertise in photonics and experiments

has been invaluable to this dissertation. His generosity in discussions and help

has been crucial.

I would like to thank all the UTDA alumni and members: Dr. Yibo

Lin, Dr. Wuxi Li, Dr. Biying Xu, Dr. Shounak Dhar, Dr. Wei Ye, Dr. Zheng

Zhao, Dr. Mohamed Baker Alawieh, Dr. Wei Shi, Dr. Arman Roohi, Dr.

Keren Zhu, Dr. Mingjie Liu, Dr. Shuhan Zhang, Zixuan Jiang, Hanqing Zhu,

Hao Chen, Rachel S. Rajarathnam, Ahmet F. Budak, Zhili Xiong, Xuyang

Jin, Hyunsu Chae, Souradip Poddar, and Chen-Hao Hsu, who have provided

me with invaluable help and suggestions throughout my academic journey. I

am also deeply appreciative of the MURI research funding and UT graduate

fellowships that funded my Ph.D. studies.

Finally, I would like to acknowledge the great love and support of my

parents and other family members, who have been my pillars of strength. I

am also deeply grateful to my friends, who have encouraged and supported me

throughout my Ph.D. studies, making my life brighter.

v

Light-AI Interaction: Bridging Photonics and Artificial

Intelligence via Cross-Layer Hardware/Software

Co-Design

Publication No.

Jiaqi Gu, Ph.D.
The University of Texas at Austin, 2023

Supervisor: David Z. Pan
Co-Supervisor: Ray T. Chen

In the post-Moore era, conventional electronic digital computers have

become a limiting factor in certain domains, most notably intelligent infor-

mation processing. The proliferation of big data and artificial intelligence

(AI) has motivated the investigation of next-generation AI computing hard-

ware to support massively parallel and energy-hungry machine learning (ML)

workloads. Photonic computing is a disruptive technology that can bring

orders-of-magnitude performance and efficiency improvement to AI/ML with

its ultra-fast speed, high parallelism, and low energy consumption. There has

been growing interest in using nanophotonic processors for performing optical

neural network (ONN) inference operations, which can make transformative

impacts in future datacenters, automotive, smart sensing, and intelligent edge.

However, the substantial potential in photonic computing also brings signifi-

cant design challenges: (1) area scalability issue (i.e., large spatial sizes of

vi

photonic devices); (2) computing reliability concern (i.e., sensitive to pro-

cess variation and chip noises); (3) adaptability difficulty (i.e., hard to train

the photonic chip for online adaptation); and (4) high design complexity

(e.g., customized mixed-signal hardware). To build next-generation photonic

AI computing platforms and bridge the gap between integrated photonics and

AI, it is required to have a cross-layer co-design and design automation stack

where the device, circuit, architecture, and algorithm are designed and opti-

mized in synergy.

This dissertation attempts to close the light-AI virtuous cycle and

proposes a holistic solution to enable scalable, robust, and adaptive pho-

tonic ML computing platforms with AI-assisted co-design and automation

methodologies. The proposed co-design stack includes three aspects: spe-

cialized photonic AI hardware design, scalable ONN on-chip training algo-

rithms, and AI-assisted intelligent automated photonic hardware design flow.

The dissertation proposes new photonic neural networks with customized de-

vices/circuits/architectures to solve scalability and robustness concerns with

various cross-layer hardware/software co-optimization methods. It also intro-

duces a series of customized algorithms for ONN on-chip training to enable

self-learnable and adaptive photonic analog accelerators. Finally, the disserta-

tion explores AI-assisted Maxwell equation-solving frameworks and automatic

differentiable photonic integrated circuit (PIC) topology search frameworks for

beyond-human design productivity, efficiency, and quality, closing the virtuous

cycle of photonics for AI and AI for photonics.

vii

The efficiency and performance of proposed hardware and algorithm

designs are verified through simulation and compared with state-of-the-art

designs on various machine learning tasks and experimentally demonstrated

on photonic neural chip tapeout. Our specialized hardware and customized

algorithms can synergistically improve the area efficiency, energy efficiency,

noise tolerance, and adaptability of photonic AI computing platforms with

beyond-human design productivity and quality.

viii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xvii

List of Figures xxii

Chapter 1. Introduction 1
1.1 Photonic Computing Background and Basics 1
1.2 Photonic AI Literature Review and Challenges 3
1.3 Overview of this Dissertation 7

Chapter 2. Hardware/Software Co-Design of Photonic Neural
Network Accelerator 11

2.1 Introduction . 11
2.2 FFT-ONN: Area-Efficient Butterfly-style Optical Neural Networks 14

2.2.1 Preliminaries . 16
2.2.1.1 FFT-based Circulant Matrix Computation . . . 17
2.2.1.2 Structured Pruning with Group Lasso Penalty . 18

2.2.2 Proposed Photonic MLP with FFT-inspired Butterfly Trans-
forms . 19
2.2.2.1 FFT-inspired Photonic MLP Architecture . . . 19
2.2.2.2 Two-Phase Training Flow with Structured Pruning 25
2.2.2.3 Theoretical Analysis on the Proposed Photonic

MLP Architecture 25
2.2.3 Photonic CNN with Learnable Frequency-domain Trans-

forms . 28
2.2.3.1 Microdisk-based Frequency-domain CNN Archi-

tecture . 29

ix

2.2.3.2 Kernel Weight Sharing 31
2.2.3.3 Learnable Frequency-domain Convolution . . . 31
2.2.3.4 Microdisk-based Augmented Kernels 36
2.2.3.5 Discussion: Exploring Inverse Transform Pairs in

Constrained Unitary Space 38
2.2.3.6 Discussion: Hardware-aware Pruning for Train-

able Transforms 40
2.2.3.7 Discussion: Hardware Cost of the Proposed MD-

based Photonic CNN 41
2.2.4 Experimental Results 43

2.2.4.1 Simulation Validation 43
2.2.4.2 Comparison Experiments on FFT-based ONNs 44
2.2.4.3 Comparison Among Different Trainable Trans-

form Settings 47
2.2.4.4 Comparison with Hardware-Aware Transform Prun-

ing . 48
2.2.5 Experimental Demonstration with Butterfly-style Pho-

tonic Neural Chip Tape-out 51
2.2.6 Summary . 58

2.3 SqueezeLight: A Multi-Operand Ring-Based ONN with Cross-
Layer Scalability . 58
2.3.1 Preliminaries . 60

2.3.1.1 Various Neural Network Designs 61
2.3.1.2 Incoherent Optical Neural Network Architectures 61
2.3.1.3 Multi-Operand Ring Resonators 61

2.3.2 Proposed MORR-based ONN Architecture 63
2.3.2.1 MORR-based Photonic Neuron 63
2.3.2.2 SqueezeLight Architecture 65
2.3.2.3 Peripheral Units 67
2.3.2.4 Area Reduction via Block-Squeezing 68
2.3.2.5 Sparsity Exploration via Fine-Grained Structured

Pruning . 68
2.3.2.6 Robustness Boost via Sensitivity-Aware Optimiza-

tion . 70
2.3.3 Hardware Feasibility and Efficiency 72

x

2.3.3.1 MORR Physical Feasibility 72
2.3.3.2 Symbolic Analysis on Area, Latency, and Power 74
2.3.3.3 Qualitative Feature Comparison 76
2.3.3.4 Quantitative System Performance Evaluation . 76

2.3.4 Extension to MORR-based Separable CNN with Aug-
mented Trainability . 79
2.3.4.1 MORR-based Separable CNN with Layer-Squeezing 79
2.3.4.2 Parametric MORR Neuron via Trainable Non-

linearity . 83
2.3.4.3 Nonlinearity-aware Initialization 83

2.3.5 Experimental Results 87
2.3.5.1 Functionality Validation via Optical Simulation 87
2.3.5.2 Compare SqueezeLight with Prior MRR-ONNs 89
2.3.5.3 Quantization 89
2.3.5.4 Fine-Grained Structured Pruning 90
2.3.5.5 Variation Robustness Evaluation 91
2.3.5.6 Extended MORR-based Separable CNN 92

2.3.6 Summary . 93
2.4 O2NN: Optical Neural Networks with Differential Detection-

Enabled Optical Operands . 95
2.4.1 Preliminaries . 96

2.4.1.1 DNNs with Stationary or Dynamic Linear Oper-
ations . 96

2.4.2 Proposed O2NN Architecture 97
2.4.2.1 Dot-Product Engine with Both Optical Operands 97
2.4.2.2 Expressivity Boost with Optical-Weight Extension 99
2.4.2.3 Performance Boost with Augmented Optical Quan-

tization . 100
2.4.2.4 Robustness Analysis and Solution 102
2.4.2.5 Discussion: Hardware Cost and Features 104

2.4.3 Experimental Results 108
2.4.3.1 Comparison Experiments 109

2.4.4 Summary . 112

xi

2.5 Towards Memory-Efficient Photonic Neural Accelerators via Multi-
Level in-situ Generation . 113
2.5.1 Preliminary . 115

2.5.1.1 Memory Bottleneck in NN Accelerator Designs . 115
2.5.1.2 Efficiency and Accuracy Trade-off 117

2.5.2 Proposed Memory-Efficient Architecture Design 118
2.5.2.1 Multi-Level Weight Generation 119
2.5.2.2 Augmented Mixed-Precision Generation 121
2.5.2.3 Training with in-situ Weight Generation 123
2.5.2.4 Case Study: Silicon Photonics Implementation . 125

2.5.3 Experimental Results 128
2.5.3.1 Dataset . 128
2.5.3.2 Neural Network Architectures 128
2.5.3.3 Training Settings 129
2.5.3.4 Ablation: Multi-Level Correlation Exploration . 129
2.5.3.5 Ablation: Multi-Level Orthogonality Regulariza-

tion . 131
2.5.3.6 Ablation: Initialization and Distillation 131
2.5.3.7 Ablation: Mixed-Precision Bases Exploration . 132
2.5.3.8 Comparison with Prior Work 134
2.5.3.9 Boost Compact Models on Harder Tasks 135

2.5.4 Summary . 136

Chapter 3. In-situ Training for Self-Learnable Photonic Neural
Engines 138

3.1 Introduction . 138
3.2 FLOPS: Efficient On-Chip Learning for ONNs Through Stochas-

tic Zeroth-Order Optimization 142
3.2.1 Preliminaries . 144

3.2.1.1 ONN Architecture and Training Methods 144
3.2.1.2 Optimization with Zeroth-Order Gradient Esti-

mation . 146
3.2.2 On-Chip ONN Training based on Zeroth-order Gradient

Estimation . 147

xii

3.2.2.1 Phase Domain Characterization 147
3.2.2.2 On-Chip Learning with Zeroth-Order Gradient

Estimation . 149
3.2.3 Robust ONN Learning with in situ Thermal Variation . 153
3.2.4 Experimental Results 157

3.2.4.1 ONN Training Method Comparison 157
3.2.4.2 On-chip Training under in situ Thermal Variation161

3.2.5 Summary . 162
3.3 MixedTrain: Power-Aware Sparse Zeroth-Order Optimization

for ONN On-Chip Learning . 163
3.3.1 Preliminaries . 164

3.3.1.1 Stochastic Zeroth-Order Optimization 165
3.3.2 Problem Formulation and Analysis 165
3.3.3 Proposed Power-Aware Mixed-Training Framework . . . 168

3.3.3.1 Scalable Mixed-Training Strategy 168
3.3.3.2 Power-Aware Dynamic Pruning 172

3.3.4 Experimental Results 174
3.3.4.1 Evaluation on Mixed-Training Strategy 175
3.3.4.2 Evaluation on the Sparsity of SZO-SCD 175
3.3.4.3 Compare with Other Zeroth-Order Optimizers . 176
3.3.4.4 Evaluation on the Power-Aware Dynamic Pruning 178
3.3.4.5 Evaluation on CNNs and Different Datasets . . 179

3.3.5 Summary . 180
3.4 L2ight: Enabling Scalable ONN On-Chip Learning via Efficient

in-situ Subspace Optimization 181
3.4.1 Preliminaries . 182
3.4.2 Synergistic ONN On-Chip Learning Framework L2ight 184
3.4.3 Understanding the ONN On-Chip Learning Problem . . 184
3.4.4 Identity Calibration (IC): Variation-Agnostic Circuit State

Preparation . 185
3.4.5 Parallel Mapping (PM): Alternate Projection-based Model

Deployment . 187
3.4.6 Subspace Learning: Hardware-Aware Multi-Level Sparse

Training . 189

xiii

3.4.6.1 In-situ Subspace Gradient Acquisition via Reci-
procity in Optics 190

3.4.6.2 Multi-Level Sparse Subspace Learning 190
3.4.7 Complexity Analysis of Three Stages in L2ight 195
3.4.8 Experimental Results 195

3.4.8.1 Experiment Setup 195
3.4.8.2 Main Results 196

3.4.9 Ablation Studies and Discussion 200
3.4.9.1 Multi-Level Sparsity in Efficient Training 200
3.4.9.2 Learnability of Restricted Subspace ONNs . . . 202

3.4.10 Summary . 204

Chapter 4. AI-Assisted Intelligent Photonic Integrated Circuit
Design Automation 205

4.1 Introduction . 205
4.2 NeurOLight: A Physics-Agnostic Neural Operator Enabling Para-

metric Photonic Device Simulation 206
4.2.1 Preliminaries . 209
4.2.2 Proposed Optical Simulation Framework NeurOLight 211

4.2.2.1 Understanding Optical Simulation for Photonic
Devices . 211

4.2.2.2 The proposed NeurOLight Framework 212

4.2.2.3 Scale-Adaptive Domain Discretization: Ω→ Ω̃ . 213
4.2.2.4 Joint PDE Representation: A→ A† 214
4.2.2.5 Efficient NeurOLight Model Architecture: Ψθ 216
4.2.2.6 Superposition-based Mixup for Better Data Effi-

ciency and Generalization 218
4.2.3 Experimental Results 220

4.2.3.1 Experiment Setup 220
4.2.3.2 Main Results 221
4.2.3.3 Ablation Studies 223
4.2.3.4 Discussion . 225

4.2.4 Summary . 227

xiv

4.3 ADEPT: Automatic Differentiable Design of Photonic Tensor
Cores . 228
4.3.1 Preliminaries . 231

4.3.1.1 Photonic Computing Premitivies 231
4.3.1.2 Programmable PTCs 232
4.3.1.3 Differentiable Neural Architecture Search 233

4.3.2 Automatic Photonic Tensor Core Design Framework ADEPT234
4.3.2.1 Problem Formulation 234
4.3.2.2 Search Space Specification 234
4.3.2.3 Fully Differentiable SuperMesh Training . . . 236
4.3.2.4 PDK-Adaptive Footprint-Constrained SuperMesh

Optimization 242
4.3.3 Experimental Results 245

4.3.3.1 Experiment Setup 245
4.3.3.2 Main Results 246
4.3.3.3 Ablation Studies 248

4.3.4 Summary . 249

Chapter 5. Conclusion and Future Work 251

Appendices 255
.1 Appendices for Introduction 256

.1.1 ONN Principles . 256
.1.1.1 Mach-Zehnder Interferometers (MZIs) 256
.1.1.2 MZI-based Photonic Tensor Core Architecture . 257

.2 Appendices for L2ight . 258
.2.1 Optical Circuit Non-ideality 258
.2.2 Intractable Gradients for MZI Rotations 259
.2.3 Detailed Description of the Proposed Parallel Mapping

Algorithm . 260
.2.4 Prove of Unbiased Gradient Approximation with Feed-

back and Feature Sampling 261
.2.5 Training Details . 261
.2.6 MZI Array Scaling . 262

xv

.2.7 Hardware Cost Evaluation 265
.2.7.1 PTC Energy Estimation 265
.2.7.2 Total Time Step Estimation 265
.2.7.3 WDM Dispersion Discussion 266

.3 Appendices for NeurOLight 267
.3.1 Optical Field Simulation 267
.3.2 Dataset Generation . 269
.3.3 Training Settings . 270
.3.4 Model Architectures . 270

Bibliography 272

Index 312

Vita 313

xvi

List of Tables

2.1 Summary of hardware component cost on an m × n layer in
SVD-based ONN and our proposed architecture (size-k circu-
lant blocks). Most area-consuming components are considered.
PS and DC represent a phase shifter and a directional coupler. 26

2.2 Hardware cost summary on the proposed MD-based photonic
CNN architecture. The input feature map is of size H ×W ×
Cin, the number of output channels is Cout, and the sparsity
of the learnable transforms is sT ∈ [0, 1]. For simplicity, we
assume H = W , which is a widely used configuration for most
CNNs. Given the ultra-compact footprint of an MD, e.g., 5×5
µm2 [195], we count 100 MDs as one DC in the area estimation.
The row-wise and column-wise convolutions are both counted
in this table. 42

2.3 Optical component sizes used in the area estimation. 44
2.4 Comparison of inference accuracy and hardware utilization on MNIST

dataset with different configurations. For example, configuration
(28×28)-1024(8)-10(2) indicates a 2-layer neural network, where the
first layer has 784 input channels, 1024 output channels with size-8
circulant matrices, and so on. 45

2.5 Accuracy comparison among four trainable transform settings. The
model is 16×16-C16-BN-MaxPool5-F32-F10. 48

2.6 Transform sparsity (T sparsity) and power consumption comparison
among optical FFT and our trainable transform with hardware-aware
pruning on MNIST and FashionMNIST dataset. T sparsity repre-
sents how many columns of phase shifters are pruned in our train-
able frequency-domain transforms. The power consumption assumes
maximum parallelism across output channels, thus 1 original trans-
form and Cout reversed transforms are counted for each layer. For the
MNIST dataset, we adopt the ONN configuration as 16×16-C16-BN-
ReLU-MaxPool5-F32-ReLU-F10, and for the FashionMNIST dataset
we set the ONN configuration as 16×16-C24-BN-ReLU-MaxPool6-
F64-ReLU-F10. The power consumption is estimated by the sum of
phase shifts given that the phase shift is proportional to the thermal
tuning power, i.e., ϕ ∝ v2. Other power consumption sources, e.g.,
insertion loss, are not considered for simplicity. 48

xvii

2.7 Comparison of block sparsity, frequency-domain transform (T) spar-
sity, normalized power consumption, and estimated area (cm2) among
1) SVD-based ONN, 2)TΣU -based ONN, 3) optical FFT, 4) our
trainable transform without pruning transforms, and 5) our trainable
transform with hardware-aware pruning on MNIST dataset. SVD-
based and TΣU -based ONN configuration is 28× 28− 400− 10, and
ours is 28× 28− 1024(8)− 10(2). All ONNs have a similar inference
accuracy with a 0.5% accuracy discrepancy among all architectures.
Block sparsity is for pruned circulant blocks. T sparsity is for pruned
trainable frequency-domain transforms. The power consumption is
normalized to SVD-based ONN, which is estimated by the sum of all
phase shifts given that the phase shift is proportional to the thermal
tuning power, i.e., ϕ ∝ v2. 49

2.8 Notations used in SqueezeLight. 64
2.9 Symbolic hardware cost and qualitative feature comparison.

The matrix is M ×N with size-k blocks. B is the DWDM ca-
pacity. For a fair comparison, the device counts are converted
to #MRRs based on real device sizes [171, 84, 70]. The area ra-
tio βa and power ratio βp between one MZI (240×40 µm2 [171],
∼48mW [84]) and one MRR (20×20 µm2,∼10 mW [179]) are
βa=24 and βp=4.8. 74

2.10 Comprehensive performance comparison between SqueezeLight
and MRR-ONN. †To keep the same area cost, SqueezeLight
uses 16 32×16 MORR arrays, and MRR-ONN uses 16 64×16
MRR weight banks in the accelerator. We use DNN-Chip Pre-
dictor [251] to search for an optimal hierarchical tiling strategy
for SqueezeLight and MRR-ONN, respectively, and use their
optimal tiling strategies for energy simulation. 75

2.11 Length-16 4-bit nonlinear vector-product simulated on a 2×4
4-op MORR array with 4 MRRs. 89

2.12 Accuracy and hardware cost comparison. small model is C32K5S2-
BN-C32K5S2-BN-F10, where C32K5S2 is 5×5 convolution with
32 kernels and stride 2, BN is BatchNorm, and F10 is a linear
layer. large model is C64K5S2-BN-C64K5S2-BN-F10. We use
k = 8 in convolutional layers and k = 4 in the final classifier.
#Device, #λ, and #Param are the number of used resonators,
wavelengths, and parameters, respectively. Normalized ratios
are shown in the parenthesis. All models are trained with 8-bit
weight/input/activation quantization. 90

2.13 Fine-grained structured pruning evaluation. #8op represents
the number of 8-operand MORRs. Ours-P represents all con-
volutional layers are pruned from k=8 to k′=4. 91

xviii

2.14 Compare the accuracy of separable SqueezeLight with fixed
and learnable MORR nonlinearity on various tasks and models.
We further prune convolutional kernels from k=9 to k′=4 to
make them implementable with 4-operand MORRs. The suffix
-L and -P represent using trainable MORR nonlinearity and
structured pruning, respectively. The settings for CNN-2 are
C64-C64-Pool5-F10. The settings for CNN-3 are C64-C64-C64-
Pool5-F10. All convolutional layers (except for the first layer)
in the model are implemented by the proposed MORR-based
separable convolution. 93

2.15 Comparison among ONNs. Area cost is normalized to O2NN
on a size-N matrix-vector multiplication based on real device
sizes [195, 171, 190, 131], i.e., one MZI ≈240×40 µm2, one
DC≈60×40 µm2, one PS≈60×40 µm2, and one MRR≈20×20
µm2. Note that our area is not a simple accumulation of device
sizes but is estimated with real layout information as a refer-
ence. Power is normalized to ours with the same statistics from
the PDK [195], i.e., one PS≈20 mW and one MRR≈4 mW .
The block size is set to k=4 for FFT-ONN [70]. 105

2.16 Accuracy evaluation on orthogonal regularization (Ortho),
initialization (ℓ2 and SVD), and knowledge distillation (KD).
ResNet-18 is evaluated on CIFAR-10. 131

2.17 Comparison among efficient convolutions in terms of parame-
ter/memory compression ratio (smaller is better) and accuracy.
The cardinality d in PENNI is 2. CirCNN uses a block size k=4.
(Ours-Bi-Bc-qb-qu-qv) is the network setup. 133

2.18 In-situ generation with activation/weight quantization on Mo-
bileNetV2 [168]. The setup follows (Ours-Bi-Bc-qb-qu-qv). A8
means 8-bit activation. † means teacher models are initialized
with ImageNet-pretrained models. The setup for TinyImageNet
is (6-60-5-5-5). 136

2.19 Evaluate compact models beyond simple tasks and classification. 136

3.1 On-chip training methods comparison in terms of inference ac-
curacy and number of ONN forward on a Vowel Recognition
dataset. PSO-150 represents a population of 150; FLOPS-40
sets Q to 40. FLOPS+-40, FLOPS+-60 are extended with
SparseTune with M=200 and 400 respectively. Normalized
number of ONN forward is also shown for efficiency comparison. 161

xix

3.2 Comparison with SOTA ZO optimizers in terms of optimizer
cost per iteration, ONN query complexity per iteration, and
memory complexity. lr is the step size. We evaluate on MNIST
with a 3-layer optical MLP (64-24-24-10). T is the total itera-
tion. d is the total number of variables (d=2,350). The sampling
factor Q is set to 60 as used in FLOPS [72]. 176

3.3 Average accuracy(std.) among different optimizers over 3 runs.
The CNN setting is 16×16-c8s2-c6s2-10 for MNIST, 32×32-
c8s2-c8s2-10 for FMNIST, and 32×32-c8s2-c8s2-c8s2-10 for CIFAR-
10. c8s2 is 8 kernels with size 3×3 and stride 2. α and s are
set to 0.05 and 0.1 for all optimizers. 178

3.4 Comparison among ADMM-based method and our dynamic
power-aware pruning. Power is estimated by the total phase
shifts of active MZIs. λ is the weight of the power penalty. The
3-layer optical MLP is 64-24-24-10, and the dataset is down-
sampled MNIST. We use α=0.15, s=0.1. 179

3.5 Power reduction on CNNs (same as Table. 3.3). DAcc. and
RAcc. mean deployed and recovered accuracy. PR-Ours and
PR-FLOPS are power reduction compared to ours(p=0) and
FLOPS. All datasets use α=0.05, s=0.1, and p=1. 180

3.6 Scalability comparison with prior ONN on-chip training pro-
tocols in terms of #Params they can handle, used algorithm,
resolution requirement (Req.), and circuit observability require-
ment. Coh. I/O is short for coherent input/output [141, 238].
ZO, FO mean zeroth- and first-order methods. 183

3.7 Compare sampling strategies on CIFAR-10 in terms of accu-
racy, activation size reduction, energy, and time step. Forward,
weight gradient, and error feedback are denoted as L, ∇ΣL,
and ∇xL. L2ight-SL is learning from scratch, and L2ight
(IC→PM→SL) is the full flow with pre-trained weights and
non-ideal Ĩ. 201

4.1 Comparison of parameter count, train error, and test error on
two benchmarks among four different models. 221

4.2 Ablation on proposed techniques. Each entry changes one tech-
nique independently. Runtime is averaged over multiple runs
on 1 NVIDIA Quadro RTX 6000 GPU. 224

4.3 Test N-MAE of an 8-layer NeurOLight with different number
of training examples. Multi-source inference mode has similar
performance as the single-source method but shows 3× faster
runtime on 3×3 MMIs. 226

xx

4.4 Evaluate searched PTCs with different sizes and footprint tar-
gets on MNIST with a 2-layer CNN. The total block number is
#Blk=BU+BV . #PS is omitted since we have #PS =K·#Blk.
All footprint constraints follow Fmin = 0.8Fmax. ADEPT-a1 to
ADEPT-a5 cover 5 different footprint targets with the device
specification from AMF foundry PDKs. In the AMF PDKs [2],
the footprint of PS, DC, and CR is 6800 µm2, 1500 µm2, and
64 µm2, respectively. All footprint is reported in the unit of
1/1000 µm2. 243

4.5 MNIST accuracy with 16×16 PTCs on AIM photonics PDKs [195],
where FPS=2500 µm2, FDC=4000 µm2, and FCR=4900 µm2. . 246

4.6 Adapt searched 16×16 PTCs to LeNet-5/VGG-8 and different
datasets on AMF PDKs. Test accuracy (%) is given in the
table. The PTC is searched on MNIST and a 2-layer CNN. . 247

1 Relative matrix error with different MZI array sizes. 263
2 IC optimality with different array sizes. 264
3 Subspace learning accuracy with different block sizes. 264
4 Summary of device design variable’s sampling range, distribu-

tion, and unit. 269

xxi

List of Figures

1.1 Exponential increase in computing demand for modern AI mod-
els (data from OpenAI and NVIDIA). Photonic computing shows
great potential in efficiency and performance breakthrough com-
pared to electronics. 2

1.2 Examples of using photonic devices/structures to implement
important computing primitives in neural networks. 3

1.3 Compared to electrical computing, photonic computing is ultra-
fast, massively parallel, and energy-efficient. 4

1.4 Photonic AI is booming both in academia and industry. Vari-
ous photonic neural network designs are emerging with strong
support from design companies, EDA vendors, and foundries. 5

1.5 Designing emerging photonic AI computing platform encounters
challenges in area scalability, noise robustness, adaptability, and
design efficiency. 6

1.6 Summary of my PhD research in photonic AI. The hardware/software
co-design stack tackles all critical challenges in optical AI with
novel cross-layer device, circuit, architecture, and algorithm co-
design. 8

2.1 Schematic diagram of a single layer of the proposed architec-
ture. All adjacent phase shifters on the same waveguide are
already merged into one phase shifter. 20

2.2 Schematics of (a) 4-point OFFT, (b) 4-point OIFFT, and (c)
2 × 2 coupler. Note that phase shifters shown above are not
merged for structural completeness consideration. 21

2.3 Complex number multiplication realized by cascaded attenua-
tor/amplifier and phase shifter. 23

2.4 Comparison between direct combining (left) and combiner tree
(right) with 4 length-2 vectors accumulated. 24

2.5 Architecture of an MD-based optical convolutional layer with
trainable frequency-domain transforms. Columns of input fea-
tures are fed into the architecture in different time steps. Mul-
tiple kernels are implemented with multiple photonic chiplets
to achieve higher parallelism. 29

xxii

https://openai.com/blog/ai-and-compute/
https://spectrum.ieee.org/nvidias-next-gpu-shows-that-transformers-are-transforming-ai

2.6 2-D convolutional kernel decomposition using weight sharing
and frequency-domain transformation. 31

2.7 (a) The original learnable frequency-domain transformation
structure. (b) The reversed learnable transformation structure. 33

2.8 Training curve of inverse loss Linv and mean square error
between trained phase configurations and theoretical 4-point
OFFT settings. 40

2.9 (a) Simulated output intensities (crosses) and ground truth (circles)
of a 4×4 identity circulant matrix-vector multiplication. (b) Simu-
lated output intensities (crosses) and ground truth (circles) of a 4×4
circulant matrix-vector multiplication, with w=(0.2,-0.1,0.24,-0.15).
E.g., (0,0,1,1) is the input signal. 44

2.10 Normalized area comparison with different model configurations.
Model 1-4 refer to Table 2.4. SVD refers to [171] and TΣU refers
to [253]. 46

2.11 Robustness comparison among OFFT and pruned trainable trans-
form on MNIST and FashionMNIST dataset. Error bar is drawn
to show the ±1σ accuracy variance from 20 runs. (a) For MNIST
dataset, we adopt the ONN configuration as 16×16-C16-BN-ReLU-
MaxPool5-F32-ReLU-F10. (b) For FashionMNIST dataset we set
the ONN configuration as 16×16-C24-BN-ReLU-MaxPool6-F64-ReLU-
F10. 50

2.12 Schematic of the butterfly-style silicon photonic-electronic neu-
ral chip. The micrograph of the neural chip is shown in (a). The
input optical beams with different wavelengths are shown in dif-
ferent colors. The necessary optical components are highlighted
in (b). (c) shows the schematic and the normalized transmis-
sion curve of an MZI attenuator in the diagonal matrix unit (Σ
unit). Only the attenuators in Σ are programmed in training. 51

2.13 Experimental setup of OSNN. (a) Schematic of our OSNN test
flow. The entire MVM is first partitioned into multiple 4×4
blocks, and each block is implemented optically on a butterfly-
style photonic-electronic neural chip (BPNC). (b) shows the
wire-bonded photonic chip and its starting/ending electrical pin
numbers, while (c) is the photography of the chip testing setup.
The parameters and the input signals are programmed by a
multi-channel digital-to-analog converter (DAC), while the out-
put signals are read by the oscilloscope. Both the oscilloscope
and the DAC are controlled by a microcontroller. The MVM re-
sults are provided to the computer for data processing in order
to train and deploy the DNN. 53

xxiii

2.14 Proposed hardware-aware training framework where the dif-
ferentiable PIC estimator learns the real chip’s behavior and
guides the OSNN weights toward a robust subspace. 54

2.15 Experimental data of digit recognition with the OSNN. (a)
Structure of the CNN, the convolution is realized by OSNN
with the im2col approach. The first convolutional layer has one
input channel and 16 output channels with a stride of 2. The
subsequent convolutional layer has 16 input/output channels
with a stride of 1, and the size of the convolutional kernel is 3×3.
After adaptive average pooling, we have 5×5×16=400 hidden
features, followed by a linear classifier with 10 outputs. (b)
The confusion matrix of the trained OSNN on MNIST, showing
a measured accuracy of 94.16%. (c) Experimental results of
convolving two input images with convolution kernels of size
3×3 in our OSNN. (d) The predicted probability distribution
of our OSNN on four selected test digits in the MNIST dataset. 55

2.16 Evaluation on larger benchmarks: >85% accuracy with ResNet-
20 on CIFAR-10 [112] and 96.5% accuracy with VGG-8 on Chest
X-ray-based COVID detection [28]. 56

2.17 Experimental setup of OSNN. (a) Area and optical delay scal-
ing with different matrix sizes. (b) Variation-aware training
flow boosts the noise robustness of BPNC. 57

2.18 (a) All-pass k-operand MORR. (b) Through port light intensity
transmission of an all-pass MORR. 62

2.19 Proposed MORR-based ONN architecture SqueezeLight
with learnable neuron balancing. 63

2.20 Block-structured matrices with learnable balancing factors. . 65
2.21 Squeezing a 4×4 block into one MORR using 4 cycles. The

right part unfolds the input rotation mechanism temporally in
4 cycles on a single MORR. 69

2.22 Fine-grained pruning enables squeezing a 8×8 structured block
into a 4-op MORR. 70

2.23 Transmission curve f and its gradient∇ϕf with thermal crosstalk
and sensitivity-aware training. 72

2.24 Architecture of separable SqueezeLight. Squeeze depthwise
and pointwise convolutional layers into one MORR array. . . . 80

2.25 Peak GPU memory consumption (a) and average GPU runtime
(b) evaluation on an MORR-based CONV3x3 layer (DATE’21)
and a DSConv3x3 layer (TCAD’21) with different input/output
channels. 82

xxiv

2.26 Trainable nonlinearity curve of parametric MORR neurons
with different bias b and scale s. Curves highlighted in the
shadow region are the activation functions applied to the dot-
product ϕ. 84

2.27 Compare the training and test accuracy curves on MNIST (a)
and FashionMNIST (b). We compare our proposed morr_uniform
with the kaiming initializer. 86

2.28 Compare theoretical and simulated results of a 4-op MORR. 88
2.29 2×4 MORR array used in simulation. 89
2.30 1- to 8-bit quantization of SqueezeLight on MNIST. 90
2.31 Robustness evaluation of the large model on MNIST. The error

bar shows ±1σ over 20 runs, e.g., 0.04 means γ=0.04 and std.
∆ϕ=0.04. Ours-PR means our pruned model with sensitivity-
aware training (α=0.02). 92

2.32 Learned MORR nonlinearity for the 1st (a) and 3rd (b) DSConv
layers in VGG-8 on CIFAR-10. Each curve represents the non-
linearity curve of one input channel. 94

2.33 Schematic of proposed WDM-based differential dot-product ar-
chitecture with optical-weight extension. 98

2.34 (a) Distribution of weights with 3-bit augmented quantization.
(b) Augmented optical quantization flow. 101

2.35 (a) Add-drop MR resonator structure with non-ideal trans-
mission factor. (b) Drop port transmission decay caused by
resonation wavelength shift. 103

2.36 Tiling-based engine assignment for parallel GEMM. 106
2.37 Evaluation of 8-bit optical-weight extension on MNIST. Ext.

is short for extension. 109
2.38 O2NN quantization on (a) MNIST and (b) FMNIST. 110
2.39 Optical simulation results with 1- to 4-bit precision. 1-bit:

x=(1,0,1,1), w=(1,0,-1,-1). 2-bit: x=(2
3
, 2
3
, 1
3
, 2
3
), w=(1

3
, 0,−2

3
,−1).

3-bit: x=(0, 1
7
, 1
7
, 6
7
), w=(1

7
, 6
7
,−5

7
,−2

7
). 4-bit: x=(1

15
, 1
5
, 11
15
, 7
15

),
w=(8

15
, 2
15
,−11

15
,− 4

15
). 111

2.40 Robustness evaluation on MNIST. Error bars show the ±1σ
variance. (a) σϕ=0.04, σα=0.04, SNR=39.81 (16 dB) (b) σϕ=0.05,
σα=0.05, SNR=31.62 (15 dB). 111

2.41 Robustness of MRR-ONN [190] on MNIST. (a) σα=0.04, SNR=39.81
(16 dB). (b) σα=0.05, SNR=31.62 (15 dB). 112

xxv

2.42 Power breakdown of a silicon photonic accelerator Mars [159,
196] (a) and an electrical accelerator Eyeriss [23] (b). The
data movement (red) takes the most power for both. (c) Roofline
model of emerging accelerators. Memory-bounded designs (red
point) need to be improved to a better design (green point) (d)
Normalized runtime and number of floating-point operations
(FLOPs) among different convolution (Conv) types. C5 is 5×5
Conv, C5G is 5×5 Conv with low-rank decomposition, 2C3 is
two cascaded 3×3 Conv, and 4C1 is four cascaded 1×3 Conv. 117

2.43 Convolutional kernel correlations in ImageNet-pretrained mod-
els are shown by the proportion of the sum of the top 30% sin-
gular values (

∑
σ30%). (a) Intra-kernel correlations averaged

on different kernels. Error bars show the ±σ variance. We skip
1×1 Conv. (b) Cross-kernel correlations, where green dots are
1×1 Conv. 119

2.44 Intra-kernel and cross-kernel generation. 121
2.45 Photonic implementation of in-situ weight generator and pe-

ripheral structures. 126
2.46 (a) Accuracy (color) and compression ratio (contour) of the

customized 3-layer CNN on FashionMNIST [222] with various
Bi and Bc (92.14% Acc. for the original Conv). (b) Accu-
racy (blue contour) and compression ratio r (black contour) for
ResNet-18 on CIFAR-10. Red stars are representative settings
of our method. Blue stars show previous designs. 126

2.47 Exploration of different orthogonal regularization weights with
ResNet-18 on CIFAR-10 [112]. 130

2.48 Accuracy and memory compression ratio contour of ResNet-
18 on CIFAR-10 with mixed-precision quantization (qb, qu, qv).
Black dots show qb=qu=qv. 132

3.1 Comprehensive motivations. (a) Computational efficiency su-
periority of ONNs [171]. (b) Noise sensitivity of ONNs (Q: 8-bit
quantization, CT: crosstalk, DV: device variation, PB: phase
bias). (c) Runtime of noise-free matrix multiplication vs. w/
noise simulation (Q+CT+DV). 139

3.2 Schematic of an MZI triangular array and a closeup view of the
MZI structure. 144

3.3 Framework of ONN on-chip training with stochastic zeroth-
order optimization. Parallel signals with k different wavelengths
are shown. 148

xxvi

3.4 (a) Training curve with different sampling factor Q; (b) train-
ing curve with different sampling variances σ. A 3-layer ONN
with configuration of 8-16-16-4 is used, where 16 represents 16
neurons at that hidden layer. 152

3.5 Optimization trajectory with the proposed on-chip training al-
gorithm in the relaxed, periodic phase space. 153

3.6 Thermal variation simulation for a 9×9 MZI triangular array
based on Poisson’s equation. (a) Initial heat source distribution;
(b) steady normalized temperature distribution. 155

3.7 (a) Comparison between software training and on-chip learning.
UP , TS, and UP−1 represent unitary parametrization, thermal sim-
ulation, and inverse unitary reconstruction, respectively. (b) Run-
time cost of unitary parametrization and inverse reconstruction. . . 156

3.8 (a), (b) are training curve comparisons among different meth-
ods with ONN configurations of 8-16-16-4, and 10-24-24-6, re-
spectively. BFT is trained for 50 epochs, and other methods
are trained for 200 epochs. 158

3.9 (a), (b) are accuracy comparisons under thermal cross-talk with
ONN configurations of 8-16-16-4 and 10-24-24-6, respectively.
The gap between Software (Ideal) and Software (Crosstalk) shows
the accuracy drop caused by thermal cross-talk. 162

3.10 Schematic of ONN on-chip learning framework with stochastic
zeroth-order mixed-training. 166

3.11 Mixed-training flow in the practical ONN deployment. 168
3.12 Test accuracy with different mixed-training sparsity α. (a)

MLP (8-16-16-4) on Vowel Recognition, (b) MLP (10-24-24-6)
on Vowel Recognition, and (c) MLP (8×8-24-24-10) on MNIST.
Close-up views show the accuracy after deployment. 174

3.13 Evaluation with different sparsity s in SZO-SCD. α is set to
0.15 for all models. (a) 8-16-16-4 on Vowel Recognition dataset.
(b) 10-24-24-6 on Vowel Recognition dataset. (c) (8×8)-24-24-
10 on MNIST dataset. 176

3.14 Estimated power and inference accuracy with different power
awareness p. The mixed-training sparsity α is selected as 0.15.
The sparsity s for SZO-SCD is set to 0.6 for (a) and (b), and is
set to 0.1 for (c). Models/datasets are the same as Fig. 3.12 . 178

3.16 ONN architecture. PTC: photonic tensor core, GLB: global
buffer, LCU: local control unit, EO: electrical-to-optical conver-
sion. 184

3.15 Proposed three-stage ONN on-chip learning flow L2ight. . . 184

xxvii

3.17 (a) Identity calibration with sign flip. (b) Different ZO opti-
mizers on identity calibration. (ZGD: ZO gradient descent with
momentum, ZCD: ZO coordinate descent, ZTP: ZO three-point.
B is the best solution recording.) 186

3.18 ZTP and ZCD-B perform the best in parallel mapping. The op-
timal singular-value projection leads to a significant error drop
and accuracy jump.) . 187

3.19 The proposed three-step in-situ subspace gradient calculation
method. 189

3.20 Balanced v.s. imbalanced feedback matrix sampling. 191
3.21 Average gradient angular similarity with different feedback

sparsity (a) and three normalization methods (b). none, exp,
and var represents no, expectation-maintained, and variance-
maintained normalization. Average gradient angular similarity
with spatial and column sampling (c) and three normalization
methods (d). 192

3.22 Spatial and column sampling for CONV. 193
3.23 Compare scalability with prior protocols [72, 65]. 197
3.24 Accuracy and hardware efficiency comparison on VGG-8 (Top)

and ResNet-18 (Bottom). 199
3.25 Accuracy v.s. weight gradient computation steps with three

feedback sampling strategies (a) and different feature sampling
techniques (b). Accuracy (93.02%) from a full-space trained
model (green). CNN-L/FashionMNIST is used for (a) and (b).
Compare different data sampling sparsity (c). 200

3.26 Impact of mapping accuracy (VGG-8 CIFAR-10 with αW=αC=0.6,
αD=0.5). acc-NI is the curve with non-ideal Ĩ. 202

3.27 (a) Transfer VGG8/Res18 from CIFAR-100 to CIFAR-10. (b)
Transfer Res18 from TinyImagenet to CIFAR-10 and 100. . . . 203

4.1 (a) Compare FDFD simulation and our NeurOLight frame-
work. (b) Different methods cover different solution spaces.
(c) NeurOLight (1 Quadro RTX 6000 GPU) runs 140×-200×
faster than the FDFD simulator (8-core i7-9700 CPUs) across
different domain sizes (50 nm grid step). 207

4.2 NeurOLight framework for optical field simulation. Real part
is plotted for complex fields. 212

4.3 Scale-adaptive domain discretization enables generalization to
different solving domain dimensions and efficient batched pro-
cessing. 213

xxviii

4.4 Wave prior as joint PDE representations. 214
4.5 Masked light source modeling. 215
4.6 NeurOLight backbone model design. 217
4.7 Data augmentation with superposition-based mixup. Only the

real part is plotted for each field. 219
4.8 Visualization on one test tunable MMI. (∆lx = 83.1 nm,∆lz =

70.8 nm, λ = 1.54 µm). 222
4.9 Visualization on one test etched MMI. (∆lx = 91.3 nm,∆lz =

89.1 nm, λ = 1.55 µm). 223
4.10 (a) Test N-MAE curves of four models. (b) Our PDE encoder

achieves the lowest error. (c) Normalized test error contour of
a 8-layer NeurOLight with different # of Fourier modes. . . 223

4.11 NeurOLight can generalize to unseen devices and wavelengths. 226
4.12 Device adaptation from 3-port to 4-/ 5-port MMI via linear

probing and finetuning. 227
4.13 Overview of the probabilistic photonic SuperMesh. 235
4.14 The proposed photonic SuperMesh training flow ADEPT, fol-

lowed by variation-aware ONN training. 237
4.15 Top: permutation optimization procedure. Bottom: an exam-

ple for stochastic permutation legalization (SPL). 239
4.16 Robustness evaluation of 16×16 PTCs with various phase noise

intensities. (a) 2-layer CNN on MNIST. (b) LeNet-5 on FM-
NIST. All models are trained with variation-aware training.
The shadow marks ±3σ uncertainty over 20 runs. 248

4.17 (a) Scan initial ρ in permutation ALM from 5e-8 to 5e-6. Red
lines are averaged λ. Blue curves are permutation errors, i.e.,
the average difference between ℓ1- and ℓ2-norm. (b) Scan β in
footprint penalty from 0.001 to 10. Red lines are expected foot-
print E[F(α)] of ADEPT-a1. Black curves are footprint penalty.
The green region marks the constraint. 249

1 2-by-2 MZI with top (T), left (L), upper (P), and lower (W)
phase shifters. 256

xxix

Chapter 1

Introduction

1.1 Photonic Computing Background and Basics

Deep neural networks (DNNs) have received an explosion of interest

for their superior performance in artificial intelligence (AI) tasks. As shown in

Fig. 1.1, the computing capacity is in an arms race with the rapidly escalating

model size and data volume. Certain applications, e.g., autonomous vehicles,

data centers, and edge devices, have strict efficiency, latency, and bandwidth

constraints, raising a surging need to develop more efficient computing solu-

tions. However, as CMOS scaling is slowing down, it becomes increasingly

challenging for conventional electrical processors to support such massively

parallel and energy-hungry DNN workloads. Limited clock frequency, high

latency, high heat density, and large energy consumption of CPUs, FPGAs,

and GPUs motivate us to seek an alternative solution using optics.

In recent years, there has been a trend to evolve from electronics to

This Introduction section is based on the following publication.

1. Jiaqi Gu, Chenghao Feng, Hanqing Zhu, Ray T. Chen and David Z. Pan, "Light in
AI: Toward Efficient Neurocomputing with Optical Neural Networks - A Tutorial,"
IEEE Transactions on Circuits and Systems–II: Express Briefs (TCAS-II), Apr. 2022.

I am the main contributor in charge of the literature review and manuscript writing.

1

AI Compute
x2 per 3.4 months

Moores' Law
x2 per 18 months

~5 the
doubling rate

Nanophotonic Processor

Photonics is Nearby in Post-Moore Era

Figure 1.1: Exponential increase in computing demand for modern AI models
(data from OpenAI and NVIDIA). Photonic computing shows great potential
in efficiency and performance breakthrough compared to electronics.

photonics in next-generation computing systems for ultra-fast, and energy-

efficient computing, especially parallel linear operations. Figure 1.2 explains

how to use integrated photonic devices/circuits to realize important comput-

ing primitives in neural networks, including modulator-based scalar multi-

ply, interferometer-based unitary matrix multiplication, and photonic inte-

grated circuits for matrix-vector multiplication. A detailed introduction to

the Mach-Zehnder Interferometer (MZI) and MZI-based ONNs can be found

in Appendix .1.1.

Figure 1.3 compares electrical and photonic computing in speed, par-

allelism, and energy efficiency. For photonic matrix multiplication, the input

vector can be encoded into optical signals using high-speed optical modulators,

while the weight matrix can be programmed to the circuit transfer matrix by

tuning the active devices. Ultra-fast MVM is implemented at the speed of

2

https://openai.com/blog/ai-and-compute/
https://spectrum.ieee.org/nvidias-next-gpu-shows-that-transformers-are-transforming-ai

Figure 1.2: Examples of using photonic devices/structures to implement im-
portant computing primitives in neural networks.

light with sub-nanosecond latency by propagating light through an optical sys-

tem. Massive parallelism can be supported by reusing the same hardware

through wavelength/mode/polarization-division multiplexing. Photonic com-

puting also shows superior energy efficiency. Unlike electrical circuits which

usually have heat density issues due to the ohmic heat dissipation, passive pho-

tonic circuits if configured intrinsically consume near-zero static power, while

only input/output consumes the most power. Hence the energy cost linearly

scales with the matrix size, instead of quadratically like electrical matrix units.

1.2 Photonic AI Literature Review and Challenges

Photonic AI, as a newly emerging field, is booming both in academia

and industry, shown in Fig. 1.4. Various photonic neural network designs

based on different mechanisms with experimental demonstration have been

3

Figure 1.3: Compared to electrical computing, photonic computing is ultra-
fast, massively parallel, and energy-efficient.

presented by academia. The integrated optical neural networks (ONNs) based

on silicon photonics have attracted extensive research interest and represented

a paradigm shift in efficient AI given their competitive integration density,

ultra-high energy efficiency, and good CMOS-compatibility [171, 215, 170].

With potential petaOPS/mm2 compute density and attojoule/MAC energy

efficiency, fully-optical NNs can have orders-of-magnitude higher performance

and efficiency than their electrical counterparts [171, 215, 170, 227, 50, 67].

Research efforts have been made on reservoir computing [11], spike

processing [188], and Ising machines [164]. An important category of ONNs is

based on coherent photonic integrated circuits. Based on matrix singular value

decomposition (SVD), Shen et al. [171] designed and fabricated a fully optical

NN that achieves a multi-layer perception (MLP) with MZI arrays. Later,

a slimmed ONN [253] and a Fourier-transform-based ONN design [70] were

proposed to reduce the area cost of photonic tensor cores. Diffractive optical

4

Photonic AI is Booming

6

Photonic Computing Chip Designs

Foundry / EPDA Support in IndustryPhotonic Neural Network Trends in Academia

[SciRep’17]

[Nat. Photon’17]

[ASP-DAC’20]

[DATE’20]

[Nature’19]

[ASP-DAC’19]

[DATE’21]

[APR’20]

[Nature’21]

[HPCA’20]

[PhysRev’19] [Nature’21]

[Nat. Comm.’22]

[Nat. Comm.’22]

Electronic-Photonic Design Automation Tools

PDK / Tape-out / Packaging Support

Figure 1.4: Photonic AI is booming both in academia and industry. Various
photonic neural network designs are emerging with strong support from design
companies, EDA vendors, and foundries.

components [260] and subwavelength devices [221, 212] were demonstrated to

implement optical neuromorphic computing.

Another category of ONNs is based on multi-wavelength incoherent

photonic integrated circuits, which do not require phase stability. ONN ar-

chitectures based on micro-ring resonator weight banks [190, 131] were in-

troduced to achieve direct matrix-vector multiplication with multiple wave-

lengths and compact photonic devices. Crossbar arrays with non-volatile

photonic phase-change material (PCM) cells and frequency micro-combs were

demonstrated to implement matrix multiplication with lower weight maintain-

ing power [50]. Photonic convolution processors based on frequency-domain

weight encoding and dispersion-based time shift were proposed to achieve high-

speed image/video processing [227]. On the industry side, electronic-photonic

5

Figure 1.5: Designing emerging photonic AI computing platform encounters
challenges in area scalability, noise robustness, adaptability, and design effi-
ciency.

computing and interconnect systems have been prototyped with strong de-

sign/layout support from electronic-photonic design automation (EPDA) ven-

dors and tape-out/packaging support from foundries.

Besides the above advantages, ONNs currently still encounter signifi-

cant design challenges, shown in Fig. 1.5.

Large Area Cost: Due to the large spatial footprint of photonic devices,

several orders-of-magnitude bulkier than nanometer transistors, photonic in-

tegrated circuits do not have high packing density and are generally not com-

petitive in area efficiency. Hence, one may not be able to squeeze a large

number of photonic components or a large matrix on the chip, which limits

the hardware scalability and compute density.

Noise Robustness Issue: Due to the analog nature of photonic circuits,

unlike CPUs/GPUs with high computing fidelity, photonic computing engines

are sensitive to manufacturing errors, process variations, dynamic/static chip

6

noises, and environmental changes. The above non-ideal effects inevitably lead

to undesired accuracy loss or even malfunction in real-world machine learning

tasks.

Adaptability Challenge: Training the optical analog chips is considerably

more challenging than training neural networks on conventional GPUs due var-

ious photonic hardware constraints. Therefore, it is hard to freely reprogram

the circuits to adapt to changing working conditions or different workloads,

which hinders many important edge applications, e.g., online learning and

local adaptation.

Low Design Efficiency: Conventional photonic hardware design flows are

based on hand-crafted designs based on standard device library and time-

consuming numerical simulation, which limits the turn-around speed and fails

to explore the huge design space.

Future photonic AI needs synergistic design technology and a holistic

solution to push the limits of the practical deployment of photonic neural

accelerators.

1.3 Overview of this Dissertation

This dissertation attempts to address the above challenges for pho-

tonic AI and close the light-AI virtuous cycle. Holistic solutions are devel-

oped to enable scalable, robust, and adaptive photonic ML computing plat-

forms with AI-assisted co-design and automation methodologies. As shown in

7

Fig. 1.6, the proposed co-design stack consists of three synergistic aspects in

the photonics-AI virtuous cycle: (1) hardware/software co-design for photonic

neural network inference accelerators; (2) efficient on-chip training algorithms

for self-learnable photonic neural engines; and (3) AI-assisted intelligent pho-

tonic integrated circuit design automation methodologies.

Chapter 2 of this dissertation proposes new ONN architectures and co-

design methods to address the fundamental scalability and robustness issues

in photonic AI accelerators. The proposed architectures include (1) FFT-ONN:

a hardware-efficient butterfly-style ONN architecture with hardware-aware

structured pruning toward higher compute density and lower noise sensitiv-

Area Robustness Efficiency Adaptability

[C2.2] Butterfly-style ONN

[ASP-DAC’20 BPA, TCAD’20, ACS Photonics’22] (Tape-out)

[C2.3] SqueezeLight: Multi-operand MRRs

[DATE’21, TCAD’22] (Tape-out)

Co-Design for

Photonic AI

Accelerators

Design

Automation for

Photonic

Hardware

On-Chip

Training &

Application

Photonic AI

Design Stack

[C4.3] ADEPT: Auto PTC Design

[DAC’22] (Best-in-Track)

[C4.2] NeurOLight: ML-Enabled Device Simulation

[NeurIPS’22, Spotlight]

Work & Contributions

in this Dissertation

[C2.5] Mem-Efficient ONN

[ICCV’21]

Chapter 3

[C3.2] FLOPS: Zeroth-order On-Chip Training

[DAC’20, BPC] [NSF Workshop’20 BPA] [AAAI’21]

[C3.4] L2ight: Scalable On-chip Training [NeurIPS’21]

[C2.4] O2NN: Dynamic Optical Dot-Product [DATE’21]
Chapter 2

Chapter 4

[C3.3] MixedTrain: Power-aware Sparse Optimization

[AAAI’21]

Figure 1.6: Summary of my PhD research in photonic AI. The hard-
ware/software co-design stack tackles all critical challenges in optical AI with
novel cross-layer device, circuit, architecture, and algorithm co-design.

8

ity; (2) SqueezeLight: an ultra-compact photonic neuron design based

on customized multi-operand microrings and fine-grained device-level sparsity

to break the compute density bottleneck of one operation/device; (3) O2NN:

a flexible photonic dot-product engine that supports dynamic tensor prod-

ucts with both operands being high-speed full-range optical signals; and (4)

Memory-efficient ONN: a memory-efficient photonic accelerator architec-

ture that leverages the weight matrix redundancy to significantly reduce mem-

ory access cost and thus system-level energy consumption via in-situ weight

generation and mixed-precision computations. The proposed ONN architec-

tures, together with the circuit-model co-optimization methods, enable scal-

able, robust, flexible, and energy-efficient photonic AI accelerators.

In Chapter 3, to enable self-learnable photonic AI engines to simul-

taneously address noise robustness and adaptability concerns, the following

ONN on-chip training algorithms are introduced: (1) FLOPS: forward-only

gradient estimator to enable ONN on-chip training with zeroth-order gradi-

ent descent; (2) MixedTrain: a mixed-training strategy with a power-aware

sparse coordinate descent optimizer to further boost training scalability and

energy efficiency; and (3) L2ight: a subspace optimization framework with

multi-level sparsity to enable million-parameter ONN online training and task

transfer with significant hardware cost reduction.

Chapter 4 explores novel methods using AI and optimization for pho-

tonic circuit design automation to enhance design productivity, efficiency, and

quality. Both device-level and circuit-level design automation techniques are

9

proposed: (1) NeurOLight, an AI-assisted Maxwell equation solving frame-

work for photonic device simulation acceleration, and (2) ADEPT, an automatic

differentiable photonic integrated circuit (PIC) topology search framework for

compact, expressive, and noise-robust photonic tensor core designs. The pro-

posed ML-assisted simulation and optimization-based photonic circuit design

flow enable a fully-automated and efficient design automation flow, closing the

virtuous cycle of photonics for AI and AI for photonics.

10

Chapter 2

Hardware/Software Co-Design of Photonic
Neural Network Accelerator

2.1 Introduction

DNNs have demonstrated superior performance in a variety of intelli-

gent tasks, for example, convolutional neural networks (CNNs) on image clas-

sification [111] and recurrent neural networks on language translation [139].

Multilayer perceptrons (MLPs) are among the most fundamental components

in modern DNNs, which are typically used as regression layers, classifiers, em-

bedding layers, attention layers, etc. However, it becomes challenging for tradi-

tional electrical digital von Neumann schemes to support escalating computa-

tion demands owing to the speed and energy inefficiency [171, 230, 56, 55, 144].

To resolve this issue, significant efforts have been made in the hardware design

of neuromorphic computing frameworks to improve the computational speed

of neural networks, such as electronic architectures [46, 208, 244] and photonic

architectures [188, 12, 57, 262, 145]. Among extensive neuromorphic com-

puting systems, optical neural networks distinguish themselves by ultrahigh

bandwidth, ultralow latency, and near-zero energy consumption. Even though

ONNs are currently not competitive in terms of area cost, they still offer a

promising alternative approach to microelectronic implementations, given the

11

above advantages.

Recently, several works demonstrated that MLP inference can be ef-

ficiently performed at the speed of light with optical components, e.g., spike

processing [188] and reservoir computing [11]. They claimed a photodetection

rate over 100 GHz in photonic networks, with near-zero energy consumption

if passive photonic components are used [204]. Based on matrix singular value

decomposition and unitary matrix parameterization [161, 163], Shen et al.

[171] designed and fabricated a fully optical neural network that achieves an

MLP with MZI arrays. Once the weight matrices in the MLP are trained

and decomposed, thermo-optic phase shifters on the arms of MZIs can be set

up accordingly. Since the weight matrices are fixed after training, this fully

optical neural network can be completely passive, thus minimizing the total en-

ergy consumption. Another work [253] proposed a slimmed ONN architecture

(TΣU) based on the previous one [171], which substitutes one of the unitary

blocks with a sparse tree network. Incoherent ONN architectures based on

micro-ring resonator weight banks [190, 131] were introduced to achieve direct

matrix-vector multiplication with multiple wavelengths and compact devices.

However, previous photonic accelerators were designed to be weight-

stationary and targeted universal programmable linear operations. Their area

efficiency, noise robustness, or flexibility are rather limited, which has become

the bottleneck of their practical application.

In this chapter, we will present a series of domain-specific photonic

computing engines with software-hardware co-design methodologies to trade

12

among matrix expressivity, hardware efficiency, robustness, and flexibility,

which are beyond the universal linear units in previous work. In the rest of

this chapter, Section 2.2 introduces a compact butterfly-style coherent ONN

architecture FFT-ONN with improved area efficiency and noise robustness.

Section 2.3 presents an incoherent ONN architecture SqueezeLight based

on our customized multi-operand micro-ring resonators to achieve extreme

compute density and power efficiency. Section 2.4 introduces a flexible pho-

tonic dot-product engine O2NN that enables both dot-product operands to be

dynamically-encoded optical signals. Section 2.5 focuses on a memory-efficient

photonic accelerator architecture that allows the ultra-fast computing engine

to generate its operands in-situ in the analog domain.

13

2.2 FFT-ONN: Area-Efficient Butterfly-style Optical Neu-
ral Networks

In addition to hardware implementation, recent advances in neural ar-

chitecture design and network compression techniques have shown a significant

reduction in computational cost. For example, structured neural networks

(SNNs)[121] were proposed to significantly reduce computational complex-

ity and thus, become amenable to hardware. Besides, network pruning of-

fers another powerful approach to slimming down neural networks by cutting

off insignificant neuron connections. While non-structured pruning [83] pro-

duces random neuron sparsity, group sparsity regularization [174] and struc-

tured pruning [208] can lead to better network regularity and hardware effi-

ciency. However, readily-available pruning techniques are rather challenging

to be applied to the SVD-based architecture due to some issues, such as ac-

This FFT-ONN section is based on the following publications.

1. Jiaqi Gu, Zheng Zhao, Chenghao Feng, Mingjie Liu, Ray T. Chen, and David Z.
Pan, "Towards Area-Efficient Optical Neural Networks: An FFT-based Architec-
ture," IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-
DAC), Jan. 2020.

2. Jiaqi Gu, Zheng Zhao, Chenghao Feng, Zhoufeng Ying, Mingjie Liu, Ray T. Chen,
and David Z. Pan, "Towards Hardware-Efficient Optical Neural Networks: Beyond
FFT Architecture via Joint Learnability," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2020.

3. Chenghao Feng∗, Jiaqi Gu∗, Hanqing Zhu, Zhoufeng Ying, Zheng Zhao, David Z. Pan,
and Ray T. Chen, "A Compact Butterfly-style Silicon Photonic-electronic Neural
Chip for Hardware-efficient Deep Learning," ACS Photonics, Nov. 2022. (∗Equal
Contribution, Chenghao Feng is in charge of chip testing and measurement. I am in
charge of structure design, circuit layout, model training, and ML task evaluation.)

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

14

curacy degradation and hardware irregularity. The gap between hardware-

aware pruning and the SVD-based architecture gives another motivation for a

pruning-friendly ONN architecture.

In this work, we propose a new ONN architecture that improves area

efficiency over previous ONN architectures. It leverages the optical fast Fourier

transform (OFFT) and its inverse (OIFFT) to implement structured neu-

ral networks, achieving lower optical component utilization. It also enables

the application of structured pruning given its architectural regularity. The

proposed architecture partitions the weight matrices into block-circulant ma-

trices [63] and efficiently performs circulant matrix multiplication through

OFFT/OIFFT. We also adopt a two-phase software training flow with struc-

tured pruning to further reduce photonic component utilization while main-

taining comparable inference accuracy to previous ONN architectures. We

extend this architecture to a hardware-efficient optical convolutional neural

network design with joint learnability, and demonstrate its superior power ef-

ficiency and noise-robustness compared with Fourier transform-based design.

The main contributions of this work are as follows:

• We propose a novel, area-efficient optical neural network architecture

with OFFT/OIFFT, and exploit a two-phase software training flow with

structured pruning to learn hardware-friendly sparse neural networks

that directly eliminate part of OFFT/OIFFT modules for further area

efficiency improvement.

15

• We experimentally show that pruning is challenging to be applied to

previous ONN architectures due to accuracy loss and trainability issues.

• We experimentally demonstrate that our proposed architecture can lead

to an area saving of 2.2∼3.7× compared with the previous SVD-based

ONN architecture, with negligible inference accuracy loss.

• We extend the architecture to a novel design for microdisk-based frequency-

domain optical convolutional neural networks with high parallelism.

• We propose a trainable frequency-domain transform structure and demon-

strate it can be pruned with high sparsity and outperforms traditional

Fourier transform with less component count, higher power efficiency,

and better noise-robustness.

• We experimentally demonstrate the butterfly-style photonic-electronic

neural chip with silicon-proven evaluation on various image recog-

nition/disease detection tasks.

2.2.1 Preliminaries

In this section, we introduce the background knowledge for our pro-

posed architecture. We discuss principles of cirulant matrix representation

and its fast computation algorithms in Section 2.2.1.1 and illustrate struc-

tured pruning techniques with Group Lasso regularization in Section 2.2.1.2.

16

2.2.1.1 FFT-based Circulant Matrix Computation

Unlike the SVD-based ONNs which focus on classical MLPs, our pro-

posed architecture is based on structured neural networks (SNNs) with cir-

culant matrix representation. SNNs are a class of neural networks that are

specially designed for computational complexity reduction, whose weight ma-

trices are regularized using the composition of structured sub-matrices [121].

Among all structured matrices, circulant matrices are often preferred in recent

SNN designs.

As an example, we show an n× n circulant matrix W as follows,
w0 wn−1 · · · w1

w1 w0 · · · w2
...

...
wn−1 wn−2 · · · w0

 .

The first column vector w = [w0, w1, . . . , wn−1]
T represents all independent

parameters in W , and other columns are just its circulation.

According to [63], circulant matrix-vector multiplication can be effi-

ciently calculated through fast Fourier transform. Specifically, given an n× n

circulant matrix W and a length-n vector x, y = Wx can be efficiently

performed with O(n log n) complexity as,

y = F−1
(
F(w)⊙ F(x)

)
, (2.1)

where F(·) represents n-point real-to-complex fast Fourier transform (FFT),

F−1(·) represents its inverse (IFFT), and ⊙ represents complex vector element-

wise multiplication.

17

SNNs benefit from high computational efficiency while maintaining

comparable model expressivity to classical NNs. Theoretical analysis [247]

shows that SNNs can approximate arbitrary continuous functions with arbi-

trary accuracy given enough parameters, and are also capable of achieving

the identical error bound to that of classical NNs. Therefore, based on SNNs

with circulant matrix representation, the proposed architecture features low

computational complexity and comparable model expressivity.

2.2.1.2 Structured Pruning with Group Lasso Penalty

The proposed ONN architecture enables the application of structured

pruning to further save optical components while maintaining accuracy and

structural regularity. Structured pruning trims the neuron connections in

NNs to mitigate computational complexity. Unlike ℓ1 or ℓ2 norm regular-

ization, which produces arbitrarily-appearing zero elements, structured prun-

ing with Group Lasso regularization[208],[58] leads to zero entries in groups.

This coarse-grained sparsity is more friendly to hardware implementation than

non-structured sparsity. The formulation of Group Lasso regularization term

is given as follows,

LGL =
G∑

g=0

√
1/pg∥βg∥2, (2.2)

where G is the total number of parameter groups, βg is the parameter vector in

the g-th group, ∥ · ∥2 represents ℓ2 norm, pg represents the vector length of βg,

which accounts for the varying group sizes. Intuitively, the ℓ2 norm penalty

∥βg∥2 encourages all elements in the g-th group to converge to 0, and the group-

18

wise summation operation is equivalent to group-level ℓ1 norm regularization,

which contributes to the coarse-grained sparsity. Leveraging the structured

pruning together with Group Lasso regularization, our proposed architecture

can save even more photonic components.

2.2.2 Proposed Photonic MLP with FFT-inspired Butterfly Trans-
forms

In this section, we will discuss details about the proposed architecture

and pruning method. In the first part, we illustrate the five stages of our

proposed architecture. In the second part, we focus on the two-phase software

training flow with structured pruning.

2.2.2.1 FFT-inspired Photonic MLP Architecture

Based on structured neural networks, our proposed architecture im-

plements a structured version of MLPs with circulant matrix representation.

A single layer in the proposed architecture performs linear transformation

via block-circulant matrix multiplication y = Wx. Consider an n-input,

m-output layer, the weight matrix W ∈ Rm×n is partitioned into p × q sub-

matrices, each being a k×k circulant matrix. To perform tiled matrix multipli-

cation, the input x is also partitioned into q segments x = (x0,x1, · · · ,xq−1).

Thus y = Wx can be performed in a tiled way,

y =


y0

y1
...

yp−1

 =


∑q−1

j=0 W0jxj∑q−1
j=0 W1jxj

...∑q−1
j=0 Wp−1jxj

 . (2.3)

19

Figure 2.1: Schematic diagram of a single layer of the proposed architecture.
All adjacent phase shifters on the same waveguide are already merged into one
phase shifter.

The ith segment yi =
∑q−1

j=0 Wijxj is the accumulation of q independent circu-

lant matrix multiplications. Each Wijxj can be efficiently calculated using the

fast computation algorithm mentioned in Eq. (2.1). Based on the aforemen-

tioned equations, we realize block-circulant matrix multiplication y = Wx in

five stages: 1) Splitter tree (ST) stage to split input optical signals for reuse;

2) OFFT stage to calculate F(x); 3) element-wise multiplication (EM) stage

to calculate F(wij)⊙F(xj) as described in Eq. (2.1); 4) OIFFT stage to calcu-

late F−1(·); 5) combiner tree (CT) stage to accumulate partial multiplications

to form the final results. F(wij) can be precomputed and encoded into op-

tical components, thus there is no extra stage to physically perform it. The

schematic diagram of our proposed architecture is shown in Fig. 2.1. Details

of the above five stages will be discussed in the rest of this section.

20

Figure 2.2: Schematics of (a) 4-point OFFT, (b) 4-point OIFFT, and (c) 2×2
coupler. Note that phase shifters shown above are not merged for structural
completeness consideration.

OFFT/OIFFT Stages To better model the optical components used to

implement the OFFT/OIFFT stages, we introduce a unitary FFT as,

Xk =
1√
N

N−1∑
n=0

xne
−i 2πkn

N k = 0, 1, · · · , N − 1. (2.4)

We denote this special operation as F̂(·) and its inverse as F̂−1(·), to distin-

guish from the original FFT/IFFT operations. Equivalently, we re-write the

circulant matrix multiplication with the above new operations,

y = F̂−1
(
F(w)⊙ F̂(x)

)
. (2.5)

This unitary FFT operation can be realized with optical components.

We first give a simple example of the optical implementation of a 2-point

21

unitary FFT. As shown in Eq. (2.7), the transformation matrix of a 2-point

unitary FFT can be decomposed into three transform matrices. They can be

directly mapped to a 3-dB directional coupler with two −π/2 phase shifters on

its lower input/output ports. The transfer matrix of a 50/50 optical directional

coupler is given by,
1√
2

(
1 j
j 1

)
. (2.6)

The transfer function of a phase shifter is out = in · ejϕ. For brevity, we refer

to this cascaded structure as a 2× 2 coupler, which is shown in Fig. 2.2(c).(
out1
out2

)
=

1√
2

(
in1 + in2

in1 − in2

)
=

(
1 0
0 −j

)
︸ ︷︷ ︸

output phase shifter

1√
2

(
1 j
j 1

)
︸ ︷︷ ︸

directional coupler

(
1 0
0 −j

)
︸ ︷︷ ︸

input phase shifter

(
in1

in2

)
(2.7)

Based on 2× 2 couplers and phase shifters, larger-sized OFFT/OIFFT

can be constructed with a butterfly structure. The schematics of a simple

4-point OFFT and OIFFT are shown in Fig. 2.2(a) and Fig. 2.2(b). Extra

0-degree phase shifters are inserted for phase-tuning purposes.

This butterfly-structured OFFT may have scalability issues because the

number of waveguide crossings (CR) will increase rapidly when the number

of points gets larger. However, this unsatisfying scalability will not limit our

proposed architecture for two reasons. First, only small values of k, e.g., 2,

4, 8, will be adopted to balance hardware efficiency and model expressivity.

Second, input and output sequences can be reordered to avoid unnecessary

waveguide crossings, as shown in Fig. 2.2.

22

Figure 2.3: Complex number multiplication realized by cascaded attenua-
tor/amplifier and phase shifter.

EM Stage In the EM stage, complex vector element-wise multiplications

will be performed in the Fourier domain as αeϕ · Iineϕin = α Iine
ϕin+ϕ, where

Iin and ϕin are magnitude and phase of input Fourier light signals respec-

tively. Leveraging the polarization of light, we use optical attenuators (AT)

or amplification materials/optical on-chip amplifiers with a scaling factor α to

realize modulus multiplication α · Iin and phase shifters with ϕ phase shift for

argument addition ej(ϕ+ϕin), which is shown in Fig. 2.3.

ST/CT Stage We introduce tree-structured splitter/combiner networks to

realize input signal splitting and output signal accumulation, respectively. To

reuse input segments xj in multiple blocks, optical splitters (SP) are used to

split optical signals. Similarly, to accumulate partial multiplication results,

i.e., yi =
∑q−1

j=0 Wijxj, we adopt optical combiners (CB) for signal addition.

Given that optical splitters can be realized by using combiners in an inversed

direction, we will focus on the combiner tree structure for brevity.
The transfer function of an N -to-1 optical combiner is,

out =
1√
N

N−1∑
l=0

inl. (2.8)

23

Figure 2.4: Comparison between direct combining (left) and combiner tree
(right) with 4 length-2 vectors accumulated.

Accumulating q length-k vectors by simply using k q-to-1 combiners introduces

a huge number of waveguide crossings which may cause intractable implemen-

tation difficulty. Also, combiners with more than two ports are still challenging

to manufacture. In order to alleviate this problem, we adopt a tree-structured

combiner network, shown in Fig. 2.4. This combiner tree consists of k(q − 1)

combiners and reduces the number of waveguide crossings to k(k−1)(q−1)/2.

Given that combiners will cause optical intensity loss by a factor of 1/
√
N as

shown in Eq. (2.8), we assume there will be optical amplifiers added to the

end to compensate for this loss.

In terms of cascading multiple layers, our proposed FFT-based MLP

is fully optical, such that the output optical signals can be directly fed into

the next layer without optical-electrical-optical (O-E-O) conversion. At the

end of the last layer, photo-detection is used for signal readout, and the phase

information of the outputs is removed, which can be fully modeled during our

training process without causing any accuracy loss.

24

2.2.2.2 Two-Phase Training Flow with Structured Pruning

Structured pruning can be applied to our proposed architecture during

training given its architectural regularity. We propose a two-phase software

training flow with structured pruning to train a more compact ONN. We first

pre-train the model with the Group Lasso regularization term to explore a good

initialization. Then we progressively prune the weight blocks by forcing some

groups to 0 based on an increasing threshold T such that the corresponding

hardware modules can be completely eliminated. Meanwhile, we finetune the

model to recover accuracy.

2.2.2.3 Theoretical Analysis on the Proposed Photonic MLP Ar-
chitecture

In this section, we analyze the hardware utilization and compare it to

previous architectures.

We derive a theoretical estimation of hardware utilization of the pro-

posed architecture, the SVD-based architecture [171], and the slimmed TΣU -

based architecture [253]. By comparing the hardware component utilization,

we show that theoretically, our proposed architecture costs fewer optical com-

ponents than the SVD-based architecture and TΣU -based architecture. The

comparison results are summarized in Table 2.1 for a clear demonstration.

For simplicity, we convert all area-costly components, i.e., 2×2 couplers,

MZIs, and attenuators, to 3-dB directional couplers (DCs) and phase shifters

(PSs). Specifically, one 2 × 2 coupler can be taken as one DC and two PSs,

25

Table 2.1: Summary of hardware component cost on an m× n layer in SVD-
based ONN and our proposed architecture (size-k circulant blocks). Most
area-consuming components are considered. PS and DC represent a phase
shifter and a directional coupler.

#DC #PS
SVD-ONN m(m− 1) + n(n− 1) + max(m,n) m(m−1)+n(n−1)

2

TΣU -ONN m(m− 1) + 2n+max(m,n) m(m−1)+2n
2

Our ONN mn(log2 k+1)
k

mn(2 log2 k+1)
k

and one MZI can be taken as two DCs and one PS. Since an attenuator can

be achieved by a single-input directional coupler with an appropriate transfer

factor, we count one attenuator as one DC.

Given an n-input, m-output layer, the SVD-based implementation re-

quires m(m − 1)/2 + n(n − 1)/2 MZIs and max(m,n) attenuators to realize

the weight matrix. Therefore, with the aforementioned assumption, the total

number of components it costs is given by,

#DCSVD = m(m− 1) + n(n− 1) + max(m,n)

#PSSVD = m(m− 1)/2 + n(n− 1)/2.
(2.9)

For the slimmed TΣU -based ONN architecture [253], one unitary matrix is

replaced by a compact sparse tree network consisting of n MZIs. Therefore,

the component utilization of TΣU -based ONN is given by,

#DCTΣU = m(m− 1) + 2n+max(m,n)

#PSTΣU = m(m− 1)/2 + n.
(2.10)

For our architecture, each k × k circulant matrix costs k attenuators and

corresponding components required by k-point OFFT/OIFFT. The following

26

formulation gives the number of components for a k-point OFFT/OIFFT.

#DCOFFT(k) = 2×#DCOFFT(k/2) + k/2 =
k

2
log2 k

#PSOFFT(k) = k(log2 k + 1)

(2.11)

A phase shift is physically meaningful only when it is within (−2π, 0] as phases

can wrap around. Hence, multiple successive phase shifters on the same seg-

ment of a waveguide can be merged as one phase shifter, which can be seen

when comparing Fig. 2.1 and Fig. 2.2. Then the total number of components

used in our design to implement an m× n weight matrix with size-k circulant

sub-matrices is given by,

#DCOurs(k) =
m

k
× n

k
× (2×#DCOFFT(k) + k)

=
mn

k
(log2 k + 1)

#PSOurs(k) =
m

k
× n

k
× (2×#PSOFFT(k)− k)

=
mn

k
(2 log2 k + 1).

(2.12)

In practical cases, k will be set to small values, such as 2, 4, and 8. Given

arbitrary values of m and n, the proposed architecture costs theoretically fewer

optical components than the SVD-based architecture.

We also give a qualitative comparison with incoherent microring resonator-

based ONNs (MRR-ONN). There are two MRR-ONN variants. The first one is

based on all-pass mircroring (MR) resonators [131]. The second one proposed

later is based on the differential add-drop MR resonators [190]. We assume

an M ×N matrix multiplication in the following tasks. Since the physical di-

mensions of MRs are smaller than couplers and phase shifters in general, thus

27

a lower area cost can be expected for MRR-ONNs compared with ours. How-

ever, in terms of model expressivity, all-pass MRR-ONN is much less than the

other two since it only supports positive weights. Add-drop MRR-ONN and

our architecture can support a full-weight range without positive limitations.

In terms of robustness, MRR-ONNs are less robust since the MR resonators

are more sensitive to device variations and environmental changes than phase

shifters. Especially for add-drop MRR-ONN, its differential structure ampli-

fies the noise on the MR transmission factor by 2 times on its represented

weight. Thus less robustness can be expected for MRR-ONNs. Furthermore,

in terms of power consumption, our architecture can benefit from structured

sparsity to obtain a much lower power, which will be shown in later Experi-

mental Results sections. In contrast, for MRR-ONNs, even though a group of

weights gets pruned to zero values, the corresponding MR resonators are not

idle [131, 190], which means its power consumption can barely benefit from

pruning techniques. Therefore, from the above qualitative analysis, though

our architecture demonstrates a relatively larger footprint than MRR-ONNs,

we outperform them in terms of model expressivity, robustness, and power.

2.2.3 Photonic CNN with Learnable Frequency-domain Transforms

To demonstrate the applicability of the proposed architecture, we ex-

tend this architecture to a compact frequency-domain microdisk (MD)-based

optical convolutional neural network (CNN) with joint learnability, where the

convolutional kernels and frequency-domain transforms are jointly optimized

28

H

W

WDM-based

Optical Inputs

MD-based

Kernels

Photo-

dectection

Photo-diode

1-to-Cout

Fanout

All-pass Microdisk

..
.

..
.

...

...

...

..
.

..
.

..
.

Original

Transform

Reversed

Transform

t
t=0t=1

Col=0Col=1

Cin MDs

F
a

n
o

u
t

N
e

tw
o

rk

kernel i

kernel i-1

kernel i+1

Figure 2.5: Architecture of an MD-based optical convolutional layer with
trainable frequency-domain transforms. Columns of input features are fed
into the architecture in different time steps. Multiple kernels are implemented
with multiple photonic chiplets to achieve higher parallelism.

during hardware-aware training.

2.2.3.1 Microdisk-based Frequency-domain CNN Architecture

Given the two-dimensional (2-D) nature of photonic integrated chips

(PICs), currently, we only demonstrate optical designs for MLPs. Previous so-

lutions to accelerate convolutional neural networks (CNNs) are based on kernel

sliding, convolution unrolling, and time multiplexing [6, 4]. At each time step,

the input feature chunks and corresponding convolutional kernels are flattened

as a one-dimensional vector and fed into the ONNs to perform vector dot-

product. Another solution to solve this is to use im2col algorithm [131, 225],

that transforms convolution to general matrix multiplication (GEMM). Con-

volutional kernels and input features are re-shaped as matrix-matrix multi-

plication, which can be directly mapped on ONNs. Such implementation is

29

inherently inefficient as overlapped convolutional patterns will create a huge

amount of data redundancy in the unrolled feature maps. In this work, we pro-

posed to achieve CNNs with a new ONN architecture equipped with learnable

transformation structures. Figure 2.5 demonstrates our proposed optical MD-

based CNN architecture featured by kernel sharing, learnable transformation,

and augmented frequency-domain kernel techniques. Multi-channel input fea-

ture maps are encoded onto multiple wavelengths and input into the learnable

frequency-domain transforms, then split into multiple branches through the

fanout network for parallel multi-kernel processing. Frequency-domain con-

volution is performed in the MD-based kernel banks and the final results are

transformed back to the real domain via the reversed transforms. Note that we

do not include a detailed discussion on the pooling operations since they are

not computationally-intensive parts in NNs. For example, optical comparators

can be used to achieve max-pooling. Average pooling can be implemented by

a fixed-weight convolution engine based on combiner-tree networks. Multiple

layers can be cascaded through O-E-O conversion. The phase information loss

during photo-detection can be fully modeled during training without harming

the model expressivity, which is actually a competitive substitute for ReLU

activation in the complex NN domain [201]. All of our experiments in later

sections model this phase removal during training, which shows that this non-

ideality induced by photo-detection does not cause any accuracy loss. We

will introduce details of the principles of the designed photonic CNN in the

following section.

30

... ...

...

x=

Weight Sharing

Frequency-domain

Element-wise Multiplication

2-D Convolution 1-D Convolution

k x k Conv Kernel

1 x k Conv Kernel

H x 1 Freq Kernel

H

W

Figure 2.6: 2-D convolutional kernel decomposition using weight sharing and
frequency-domain transformation.

2.2.3.2 Kernel Weight Sharing

Modern CNN architectures, e.g., inception architecture [185], adopt

weight sharing to reduce the number of parameters in the convolutional layers.

For example, a 5×5 2-D convolution involves 25 parameters. It can be replaced

by two cascaded lightweight 1× 5 and 5× 1 convolutions, which only contain

10 unique variables. Such a strategy trains a low-rank convolutional kernel

and can benefit its photonic implements as it can be directly applicable to 2-D

PICs, which is visualized in Fig. 2.6.

2.2.3.3 Learnable Frequency-domain Convolution

Spatial domain convolution requires to slide the receptive field of con-

volutional kernels across the input features. This could induce hardware im-

plementation difficulty and inefficiency as time multiplexing increases the la-

tency and control complexity of photonic convolution. we solve this issue by

31

a parametrized frequency-domain convolution method. As mentioned before,

we decompose the 2-D convolution as row-wise and column-wise 1-D convo-

lutions through weight sharing. For brevity, we focus on the column-wise

frequency-domain convolution in the following discussion. The same principle

also applies to the row-wise convolution. The column-wise convolution can be

formulated as

w ∗ x =T−1(T(w;ϕ)⊙ T(x;ϕ);ϕ), (2.13)

where T(·;ϕ) is the learnable frequency-domain projection, and ϕ represents

the trainable parameters in it. This parametrized transformation enlarges the

parameter space to compensate for the model expressiveness degradation in-

duced by kernel weight sharing. Considering the learnable transform as a high-

dimensional unitary rotation, it is not necessary to adopt an inverse transform

pair to limit the exploration space. To enable the maximum learnability of

our trainable transform structure, we relax the inverse transform to a reversed

transform,

w ∗ x =Tr(T(w;ϕ)⊙ T(x;ϕ);ϕr), (2.14)

where Tr has a reversed butterfly structure but is not constrained to be the

inverse of T.

We now discuss how our proposed trainable transform structures can

move beyond Fourier transform, thus enabling hardware-aware learnability.

Fourier transform is a complex domain transformation that is mathematically

32

Forward

Backward

B0 P0 B1 P1 B2

(a) (b)

Forward

Backward

B2 P1 B1 P0 B0

ϕ2

ϕ1

Basic

Transform T(2)

D D

B0 P0 B1 P1 B2 D B2 P1 B1 P0 B0 D

Figure 2.7: (a) The original learnable frequency-domain transformation struc-
ture. (b) The reversed learnable transformation structure.

designed for frequency component extraction. However, the Fourier trans-

form is not necessary to be the best-performed transformation that can be

used in CNNs. Other manually designed unitary transforms are also exper-

imentally demonstrated to have a similar ability for signal integration and

extraction [249]. Hence, we upgrade the fixed transformation structure to an

adaptive structure where all phase shifters are trainable. As mentioned in the

Section 2.2.2.3, phase shifters in the same segment of the waveguide can be

merged into one phase shifter. Therefore, to avoid redundant trainable phase

shifters, we re-design the learnable basic block, as shown in Fig. 2.7. For the

original transformation, two phase shifters ϕ1 and ϕ2 are placed on the input

port of the directional coupler. The transfer function of a learned basic block

33

can be formulated as,

T(2) =
1√
2

(
1 j
j 1

)(
ejϕ1 0
0 ejϕ2

)
=

1√
2

(
cosϕ1 + j sinϕ1 − sinϕ1 + j cosϕ1

− sinϕ2 + j cosϕ2 cosϕ2 + j sinϕ2

)
.

(2.15)

In the reversed transformation structure, the basic block is the same as used

in the original transforms since the inverse basic block requires a conjugate

transposed transfer function which is not implementable with this basic block.

Based on this basic block, we recursively build a trainable N -length trans-

form with a butterfly structure, which can be described as log2N stages of

projection, log2N − 1 stages of permutation, and a final extra group of phase

shifters. The original transformation, shown in Fig. 2.7(a), can be formulated

as,

T(N) = D Blog2 N−1(N)

log2 N−2∏
i=0

Pi(N)Bi(N), (2.16)

where Bi(N) the i-th stage of butterfly projection, Pi(N) is the i-th stage signal

permutation, and the diagonal matrix D represents the final extra column of

phase shifters. The butterfly projection operator B(N) is a diagonal matrix

with a series of T(2) as its diagonal sub-matrices,

B(N) =


T0(2) 0 · · · 0
0 T1(2) · · · 0
· · · · · · · · · · · ·
0 0 · · · TN/2−1(2)

 (2.17)

The index permutation operator Pi(N) can be expressed as a size-N identity

matrix with reordered rows. As shown in P0 and P1 in Fig. 2.7, the green

34

entries represent 1, and other blank entries represent 0. Note that the permu-

tation operators in the reversed structure are simply the reversed counterparts

in the original structure, i.e., Pi,ori(N) = PT
i,rev(N). The reversed learnable

transformation, shown in Fig. 2.7(b), is designed to have reversed butterfly

structure which can be derived as follows,

Tr(N) = D
(log2 N−2∏

i=0

Br,i(N)Pr,i(N)
)
Br,log2 N−1(N). (2.18)

Note that the reversed transform is not guaranteed to be inverse to the original

transform, which requires particular phase configurations discussed later.

Compared with its MZI-based counterparts, this trainable butterfly

transformation structure has a constrained projection capability as only a lim-

ited set of unitary matrices can be implemented by it [105, 49]. As shown

in unitary group parametrization, a full N -dimensional unitary space U(N)

has N(N − 1)/2 independent parameters, while the butterfly structure sub-

stitutes part of parametrized unitary matrices with fixed permutation opera-

tors. Hence, based on full two-dimensional unitary matrices U(2), the butter-

fly structure has 2N log2N independent parameters. Our proposed learnable

block T(2) is a reduced version of U(2), as it only covers half of the full 2-D pla-

nar rotation space. The pruned transform space T∗(2) can be expressed as the

conjugate transpose of T(2), which is not implementable without waveguide

crossings.

T∗(2) =
1√
2

(
0 −j
−j 0

)(
1 j
j 1

)(
ejϕ1 0
0 ejϕ2

)
(2.19)

35

Equivalently, our learnable transformation structure has N log2N free param-

eters.

2.2.3.4 Microdisk-based Augmented Kernels

To enable highly-parallel CNN architecture with reinforced model ex-

pressiveness, we propose MD-based augmented convolutional kernels with multi-

level parallelism across input features, input channels, and output channels.

In our design, each 2-D convolutional layer consists of two cascaded

1-D frequency-domain convolutions along columns and rows. We will focus

on the column-wise convolution, and the same architecture applies to its row-

wise counterpart with an extra matrix transposition operation. We denote

the input feature map as I ∈ RCin×H×W , which Cin, H,W represent the num-

ber of input channel, spatial height, and spatial width, respectively. At time

step t, The corresponding column I:,t,: ∈ RCin×H×1 will be input into the

photonic CNN. Different input channels are encoded by different wavelengths

{λ0, λ1, · · · , λCin−1}. Through the wide-band learnable transformation struc-

ture, we obtain the frequency-domain features T(I:,t,:;ϕ). This stage enables

parallel transformation across the input channels. Then the optical signals

carrying those features will be split into Cout planes for data reuse. Such

a multi-dimensional ONN design can be supported by state-of-the-art inte-

gration technology with multiple photonic chiplets [138]. In the MD-based

convolution stage, Cout × Cin × H all-pass MDs are used to implement the

frequency-domain kernels W ∈ RCout×Cin×H . Given that the working princi-

36

ple of MD is primarily optical signal magnitude modulation, our augmented

kernels are trainable only in the magnitude space without phase modulation.

Each convolutional core is designed to perform the convolution of one output

channel. This MD-based convolution is different from the previous EM stage

consisting of attenuators and phase shifters. First, all pass MDs can only per-

form configurable magnitude modulation of the input signals with fixed phase

responses, which means the augmented kernels will not expand over the entire

complex space. Here we give the transfer function of an MD,

Iout = W · Iin

cos θ =
a2 + r2 −W (1 + r2a2)

2(1−W)ar

ϕout = π + θ + arctan
r sin θ − 2r2a sin θ cos θ + ra2 sin θ

(a− r sin θ)(1− ra cos θ)
,

(2.20)

where Iin is the magnitude of the input light, Iout, ϕout are the magnitude and

phase of the output optical signal, θ, a, r are the phase, self-coupling coeffi-

cient, and coupling loss factor of an MD, respectively. W is the transmitivity

of the MD which corresponds to the trained augmented kernel weight. Typi-

cally, parameters a and r are very close to 1. Our proposed architecture enables

another level of parallelism across output channels. Given that different convo-

lutional kernels share the same input features, multiple MD convolution cores

and reversed transform structures will share one original transform structure

for hardware reuse and highly-parallel convolution.

A higher modeling capacity is enabled by our augmented kernel tech-

nique. Instead of training spatial kernels w, we explicitly train the latent

37

weights W in the frequency domain without performing T(w;ϕ) during train-

ing. The augmented latent weights W will not meet the conjugate symmetry

constraint as its spatial-domain counterparts are not real-valued. Hence, this

enables a potentially infinite solution space in the spatial kernel space with

various kernel sizes and shapes.

We briefly discuss the scalability of this WDM-based highly-parallel

architecture. WDM plays an important role in the high parallelism of our pro-

posed frequency-domain photonic CNN. Currently, the widely acknowledged

maximum number of wavelength in the single-mode dense-WDM (DWDM) is

over 200 [191, 54, 233]. When mode-division multiplexing is further consid-

ered, higher parallelism can be supported given the current technology. This

means in our architecture has enough parallelism to support most modern

CNN architectures.

2.2.3.5 Discussion: Exploring Inverse Transform Pairs in Constrained
Unitary Space

In manually designed frequency-domain convolution algorithms, do-

main transformation will be designed to be inverse, e.g., FFT and IFFT. This

implies an inverse constraint between two mutually-reversed transform struc-

tures T and Tr. To be able to realize trainable inverse transform pairs, we add

unitary constraints to our learnable transform structures,

Tr(·,ϕr) = T−1(·;ϕ). (2.21)

38

Inverse constraints typically can be addressed by adding a regularization term

in training,

Linv = ∥UrU − I∥2. (2.22)

However, this requires explicit transfer matrices of T and Tr to compute this

regularization term [34], which is memory-intensive and computationally ex-

pensive as indicated by Eq. (2.17), Eq. (2.18). We propose an efficient regu-

larization method to exert the inverse constraint.

Linv = ∥Tr(T(e))− e∥2, e ∈ CN , (2.23)

where e is the orthonormal bases of N -dimensional complex space. Notice

that if Tr(T(e)) = e, then for any x = αTe the following statement holds,

Tr(T(x)) = Tr(T(α
Te)) = αTTr(T(e)) = x. (2.24)

Thus transforms T and Tr are inverse transforms once the regularization loss

reaches 0. This surrogate method reduce the computation complexity from

O(N2 log2N) in Eq. (2.16) to O(N log2N), where diagonal matrix multiplica-

tion with B(N) is simplified by 2× 2 sub-matrix multiplication with T(2).

Using our proposed inverse pair regularization method, we show that

our trainable transform T can efficiently learn Fourier transform by setting Tr

as OIFFT. Figure 2.8 demonstrates that the trainable transform will quickly

converge to the theoretical OFFT as the mean square error between trained

phase settings and target phase shifter settings reduces to 0 when the loss

converges.

39

Figure 2.8: Training curve of inverse loss Linv and mean square error between
trained phase configurations and theoretical 4-point OFFT settings.

2.2.3.6 Discussion: Hardware-aware Pruning for Trainable Trans-
forms

In this section, we demonstrate that our proposed trainable transform

has excellent compatibility with hardware-aware pruning techniques. Com-

pared to the fixed manual design of frequency-domain transforms, e.g., OFFT,

we can further boost the hardware efficiency by eliminating a subset of phase

shifter columns inside the trainable transforms. With this fine-grained struc-

tured pruning, we can improve the area, power, and noise robustness since

phase shifters contribute to nearly 50% of the total area and the majority of

the total power and noise. We adopt a phase-wrapping Group Lasso regular-

ization similar to Eq. (2.2) together with an incremental pruning technique

to slim the trainable transforms targeted at lower area cost and lower power

consumption. The proposed phase-wrapping Group Lasso (PhaseGL) is for-

40

mulated as,

LPhaseGL =
G∑

g=0

√
1/pg∥ϕg − ϕ∗

g∥2,

ϕ∗
g,i =

{
0, ϕg,i ∈ [0, π), 0 ≤ i < pg

2π, ϕg,i ∈ [π, 2π), 0 ≤ i < pg,

(2.25)

where ϕg is a column of phase shifters, and this regularization term encourages

phases towards their corresponding prunable targets ϕ∗
g. G is the total columns

of phase shifters, which is (log2N + 1) for a length-N transform. Once the

group lasso of a column falls below a threshold TT, the entire column of phase

shifters are pruned. The ratio of pruned columns to all phase shifter columns

is called transform sparsity (T sparsity), defined as,

sT =
|{ϕg|

√
1/pg∥ϕg − ϕ∗

g∥ < TT}|
G

.

Our proposed regularization and pruning strategy improves area cost as an

entire column of phase shifters is pruned to save chip area in the actual layout.

Furthermore, power consumption and noise robustness can also be improved

as a majority of power consumption and noises are from trainable transform

structures [252, 74, 253].

2.2.3.7 Discussion: Hardware Cost of the Proposed MD-based Pho-
tonic CNN

We give a summary of the hardware component usage of the proposed

MD-based photonic CNN architecture in Table. 2.2. Our architecture shares

the original transform among multiple kernels to save area. Our proposed

pruning technique can regularly sparsify the transform structures for further

41

Table 2.2: Hardware cost summary on the proposed MD-based photonic
CNN architecture. The input feature map is of size H ×W × Cin, the num-
ber of output channels is Cout, and the sparsity of the learnable transforms is
sT ∈ [0, 1]. For simplicity, we assume H = W , which is a widely used configu-
ration for most CNNs. Given the ultra-compact footprint of an MD, e.g., 5×5
µm2 [195], we count 100 MDs as one DC in the area estimation. The row-wise
and column-wise convolutions are both counted in this table.

Structure Hardware Cost
T H log2H DCs + 2sTH(1 + log2H) PSs

Kernel 2HCinCout MDs≈ H
50
CinCout DCs

Tr H log2HCout DCs + 2sTH(1 + log2H)Cout PSs
Total ≈ H(log2H + Cin

50
)Cout DCs + 2sTH(1 + log2H)Cout PSs

area reduction. The MD-based convolution stage is very compact since the

footprint of an MD is two-order-of-magnitude smaller than a DC. In contrast,

the SVD-based ONN costs H(C2
out+C2

in×K4) DCs and H(C2
out/2+C2

in×K4/2)

PSs to achieve the same latency with our architecture, i.e., H forwards to finish

a convolutional layer, where K is the spatial kernel size. For example, if we set

H=64, Cin=Cout=32, K=3, sT=0.5, our architecture uses >370× fewer DCs

and >180× fewer PSs than the single-wavelength SVD-based ONN. If SVD-

based ONNs also use WDM techniques for higher parallelism with the same

number of wavelengths as ours, i.e., 32, we still outperform theirs by 11.6×

fewer DCs and 5.6× fewer PSs. Hence, our frequency-domain CNN archi-

tecture outperforms previous MZI-ONNs with higher computational efficiency

and better scalability by a large margin.

42

2.2.4 Experimental Results

We conduct numerical simulations for functionality validation and eval-

uate our proposed architecture on the hand-written digit recognition dataset

(MNIST) [115] with various network configurations. Quantitative evaluation

shows that our proposed architecture outperforms the SVD-based and TΣU-

based ONN architectures in terms of area cost without any accuracy degrada-

tion. We further evaluate our proposed MD-based photonic CNN architecture

and demonstrate its superior power reduction and robustness improvement on

MNIST [115] and FashionMNIST [222] dataset.

2.2.4.1 Simulation Validation

To validate the functionality of our proposed architecture, we conduct

optical simulations on a 4 × 4 circulant matrix-vector multiplication module

using Lumerical INTERCONNECT tools. First, we encode a 4 × 4 identity

weight matrix into our architecture and input 4 parallel optical signals to val-

idate its functionality. For brevity, we plot several different representative

cases in Fig. 2.9(a). It shows that our designed architecture can correctly real-

ize identity projection. Further, we randomly generate a length-4 real-valued

weight vector w = (0.2,−0.1, 0.24,−0.15) to represent a circulant matrix,

and encode F(w) = (0.19e0j, 0.064e−2.246j, 0.69e0j, 0.064e2.246j) into attenua-

tors and phase shifters in the EM stage. The simulation results in Fig. 2.9(b)

show good fidelity (< 1.2% maximum relative error) to the ground truth re-

sults.

43

(a)

(b)

Figure 2.9: (a) Simulated output intensities (crosses) and ground truth (circles) of a
4×4 identity circulant matrix-vector multiplication. (b) Simulated output intensities
(crosses) and ground truth (circles) of a 4×4 circulant matrix-vector multiplication,
with w=(0.2,-0.1,0.24,-0.15). E.g., (0,0,1,1) is the input signal.

Table 2.3: Optical component sizes used in the area estimation.

Optical Component Length (µm) Width (µm)
3-dB Directional Coupler [171] 54.4 40.3
Thermo-optic Phase Shifter [84] 60.16 0.50
2-to-1 Optical Combiner [172] 20.00 3.65
Waveguide Crossing[245] 5.9 5.9

2.2.4.2 Comparison Experiments on FFT-based ONNs

To evaluate our proposed ONN architecture, we conduct a comparison

experiment on a machine learning dataset MNIST [115], and compare the

hardware utilization, model expressivity among four architectures: 1) SVD-

based architecture [171]; 2) TΣU-based architecture [253]; 3) Ours without

pruning; 4) Ours with pruning.

We implement the proposed architecture with different configurations

44

Table 2.4: Comparison of inference accuracy and hardware utilization on MNIST
dataset with different configurations. For example, configuration (28×28)-1024(8)-
10(2) indicates a 2-layer neural network, where the first layer has 784 input channels,
1024 output channels with size-8 circulant matrices, and so on.

Network Configurations Block Sparsity #Param Accuracy #DC #PS Area (cm2)

Model 1

SVD[171]: (28×28)-400-10 0.00 318 K 98.49% 934 K 467 K 20.62
TΣU[253]: (28×28)-400-10 0.00 318 K 98.49% 777 K 388 K 17.15
Ours w/o Prune: (28×28)-1024(8)-10(2) 0.00 105 K 98.32% 412 K 718 K 9.33
Ours w/ Prune: (28×28)-1024(8)-10(2) 0.40 63 K 98.26% 244 K 425 K 5.53

Model 2

SVD[171]: (14×14)-70-10 0.00 14 K 96.93% 48 K 24 K 1.07
TΣU[253]: (14×14)-70-10 0.00 14 K 96.93% 44 K 22 K 0.97
Ours w/o Prune: (14×14)-256(4)-10(2) 0.00 14 K 96.93% 40 K 67 K 0.90
Ours w/ Prune: (14×14)-256(4)-10(2) 0.45 8 K 96.91% 22 K 36 K 0.49

Model 3

SVD[171]: (28×28)-400-128-10 0.00 366 K 98.58% 967 K 483 K 21.35
TΣU[253]: (28×28)-400-128-10 0.00 366 K 98.58% 794 K 396 K 17.52
Ours w/o Prune: (28×28)-1024(8)-128(4)-10(2) 0.00 134 K 98.53% 501 K 868 K 11.34
Ours w/ Prune: (28×28)-1024(8)-128(4)-10(2) 0.39 81 K 98.43% 289 K 517 K 6.77

Model 4

SVD[171]: (14×14)-160-160-10 0.00 59 K 97.67% 141 K 70 K 3.10
TΣU[253]: (14×14)-160-160-10 0.00 59 K 97.67% 91 K 45 K 2.00
Ours w/o Prune: (14×14)-256(4)-256(8)-10(2) 0.00 22 K 97.67% 73 K 123 K 1.64
Ours w/ Prune: (14×14)-256(4)-256(8)-10(2) 0.37 14 K 97.52% 47 K 79 K 1.05

in PyTorch and test the inference accuracy on a machine with an Intel Core

i9-7900X CPU and an NVIDIA TitanXp GPU. We set λ to 0.3 for the Group

Lasso regularization term, initialize all trainable weights with a Kaiming-

Normal initializer [85], adopt the Adam optimizer [109] with initial learn-

ing rate=1 × 10−3 and a step-wise exponential-decay learning rate schedule

with decay rate=0.9. We use the ideal rectified linear units (ReLU) activa-

tion function as nonlinearity. All NN models are trained for 40 epochs with

a mini-batch size of 32 till fully converged. The structured sparsity for our

proposed FFT-based MLP is defined as the percentage of pruned parameters

in all parameters, i.e., |{w|∥wij∥2 < T}|/|w|. We call it block sparsity.

For a fair comparison, all architectures are trained with the same hyper-

parameters and have similar test accuracy in each experiment configuration.

To estimate the component utilization and area cost, we adopt exactly the

45

Figure 2.10: Normalized area comparison with different model configurations.
Model 1-4 refer to Table 2.4. SVD refers to [171] and TΣU refers to [253].

same type of photonic devices in all architectures, as listed in Table 2.3, and

accumulate the area of each optical component for approximation. Placement

or routing information is not considered in our estimation.

In Table 2.4, the first column indicates different neural network config-

urations. In the TΣU-based architecture, the total number of MZIs used to

implement an m× n weight matrix is bounded by n(n+1)/2. Among various

network configurations, our proposed architecture outperforms the SVD-based

architecture and the TΣU-based architecture with lower optical component

utilization and better area cost. We normalize all areas to our architecture

with pruning applied and show the normalized area comparison in Fig. 2.10.

Consistent with analytical formulations in Section 2.2.2.3, the experimental

results show that, as the difference between input and output channels for

each layer in the original MLPs gets larger, our proposed architecture can save

a larger proportion of optical components.

46

Furthermore, ablation experiments on our structured pruning method

validate the effectiveness of the proposed two-phase training flow. It can save

an extra 30-50% optical components with negligible model expressivity loss.

2.2.4.3 Comparison Among Different Trainable Transform Settings

As mentioned in previous sections, we extend our ONN architecture

to MD-based CNNs with trainable frequency-domain transforms. We will

demonstrate several experimental evaluations on our proposed MD-based CNN

architecture.

First, we discuss how different transform settings impact the CNN per-

formance. Recall that each 2-D frequency-domain convolution involves total

four trainable transforms, denoted as Trow,Trow,r,Tcol,Tcol,r. Therefore we eval-

uate the performance of four different transform settings on MNIST dataset:

(1) four transforms are trained independently (AllFree); (2) Column-wise

and row-wise convolutions share the same transform as Trow = Tcol,Trow,r =

Tcol,r (Shared); (3) Reversed transforms are constrained to be close to the in-

verse transform as Trow,r ≈ T−1
row,Tcol,r ≈ T−1

col (Inverse); (4) Transforms are

shared between column-wise and row-wise convolutions and the inverse con-

straints are applied (InvShared). Table 2.5 shows the comparison results.

Based on the results, we observe that the inverse constraint and shared

transform produce no benefits in terms of inference accuracy. Training the

original and reversed transforms across row-wise and column-wise convolutions

47

Table 2.5: Accuracy comparison among four trainable transform settings. The
model is 16×16-C16-BN-MaxPool5-F32-F10.

Settings AllFree Shared Inverse InvShared
Test Accuracy 96.88% 96.13% 96.41% 96.40%

Table 2.6: Transform sparsity (T sparsity) and power consumption comparison
among optical FFT and our trainable transform with hardware-aware pruning on
MNIST and FashionMNIST dataset. T sparsity represents how many columns of
phase shifters are pruned in our trainable frequency-domain transforms. The power
consumption assumes maximum parallelism across output channels, thus 1 original
transform and Cout reversed transforms are counted for each layer. For the MNIST
dataset, we adopt the ONN configuration as 16×16-C16-BN-ReLU-MaxPool5-F32-
ReLU-F10, and for the FashionMNIST dataset we set the ONN configuration as
16×16-C24-BN-ReLU-MaxPool6-F64-ReLU-F10. The power consumption is esti-
mated by the sum of phase shifts given that the phase shift is proportional to the
thermal tuning power, i.e., ϕ ∝ v2. Other power consumption sources, e.g., insertion
loss, are not considered for simplicity.

Dataset Transform OFFT Trainable (Pruned)

MNIST [115] T Sparsity 0% 88.2%
Normalized Power 100% 18.4%

FashionMNIST [222] T Sparsity 0% 88.4%
Normalized Power 100% 15.5%

independently offers the best results. Thus, we will use AllFree transform

settings for our experiments.

2.2.4.4 Comparison with Hardware-Aware Transform Pruning

To jointly optimize classification accuracy and hardware cost in terms of

area, power, and robustness, we perform hardware-aware pruning assisted by

phase-wrapping Group Lasso regularization to our proposed trainable trans-

forms. The weight for LPhaseGL is 0.05, and we set 10 epochs for the first

pretraining phase and 40 epochs for incremental structured pruning.

48

Table 2.7: Comparison of block sparsity, frequency-domain transform (T) sparsity,
normalized power consumption, and estimated area (cm2) among 1) SVD-based
ONN, 2)TΣU -based ONN, 3) optical FFT, 4) our trainable transform without prun-
ing transforms, and 5) our trainable transform with hardware-aware pruning on
MNIST dataset. SVD-based and TΣU -based ONN configuration is 28×28−400−10,
and ours is 28×28−1024(8)−10(2). All ONNs have a similar inference accuracy with
a 0.5% accuracy discrepancy among all architectures. Block sparsity is for pruned
circulant blocks. T sparsity is for pruned trainable frequency-domain transforms.
The power consumption is normalized to SVD-based ONN, which is estimated by
the sum of all phase shifts given that the phase shift is proportional to the thermal
tuning power, i.e., ϕ ∝ v2.

Architecture Block Sparsity T Sparsity Power Area (cm2)
SVD-based [171] - - 100% 20.62
TΣU -based [253] - - 83.1% 17.15
Ours-OFFT [70] 0.40 0.00 98.9% 5.53
Ours-Trainable 0.71 0.00 79.9% 2.54
Ours-Trainable 0.66 0.96 9.9% 2.99

Power Consumption Evaluation We calculate the energy cost by sum-

ming all phase shifts as they are proportional to power consumption, and

show the energy saved by our pruned transforms in Table 2.6. We also

evaluate the power consumption by applying pruned trainable transform in

our block-circulant matrix based MLP architecture in Table 2.7. Therefore,

our energy-saving and area-efficient ONN architecture is more suitable for

resource-constrained applications, e.g., edge computing and online learning

tasks [72, 99].

Variation-Robustness Evaluation To evaluate the noise-robustness of

the frequency-domain transform, we inject device-level variations into phase

shifters to introduce phase programming errors and demonstrate the accuracy

and its variance under different noise intensities σ on MNIST and FashionM-

49

(a) (b)

Figure 2.11: Robustness comparison among OFFT and pruned trainable transform
on MNIST and FashionMNIST dataset. Error bar is drawn to show the±1σ accuracy
variance from 20 runs. (a) For MNIST dataset, we adopt the ONN configuration
as 16×16-C16-BN-ReLU-MaxPool5-F32-ReLU-F10. (b) For FashionMNIST dataset
we set the ONN configuration as 16×16-C24-BN-ReLU-MaxPool6-F64-ReLU-F10.

NIST dataset. Specifically, we inject Gaussian noise ∆γ ∼ N(0, σ2) into the γ

coefficient of each phase shifter to perturb its phase response ϕn = (γ+∆γ)v2,

where γ is calculated by the voltage that can produce π phase shift as γ = π/v2π

and we adopt 4.36V as the typical value of vπ [171, 74]. Figure 2.11 shows

that∼ 80% structured sparsity can be achieved by our phase-wrapping pruning

method, and our pruned trainable transform outperforms the OFFT structure

with over 80% power reduction and much better robustness under various noise

intensities.

We also evaluate the robustness on our circulant-matrix-based MLP

architecture. Our FFT-based MLP and trainable transform-based architecture

show superior robustness with over 97% accuracy on MNIST due to their

structured sparsity and blocking design, while the SVD-based ONN drops

50

Figure 2.12: Schematic of the butterfly-style silicon photonic-electronic neural
chip. The micrograph of the neural chip is shown in (a). The input optical
beams with different wavelengths are shown in different colors. The necessary
optical components are highlighted in (b). (c) shows the schematic and the
normalized transmission curve of an MZI attenuator in the diagonal matrix
unit (Σ unit). Only the attenuators in Σ are programmed in training.

below 90% due to severe error accumulation.

2.2.5 Experimental Demonstration with Butterfly-style Photonic
Neural Chip Tape-out

We experimentally demonstrate the practicality of the FFT-ONN ar-

chitecture using our butterfly-style photonic-electronic neural chip (BPNC),

taped out at Advanced Micro Foundry, capable of implementing 4×4 matrix

51

multiplication. Since the butterfly photonic meshes B and P are fixed, and

only the diagonal Σ units are trained, we refer to the implemented neural net-

work as optical subspace neural network (OSNN) since a subspace of matrices

can be expressed. The schematic of the fabricated BPNC is shown in Fig 2.12,

with the close-ups of its components, such as phase shifters, 50-50 directional

couplers, and crossings. The unitary matrix units B and P are marked in

red/green. The active phase shifters in these regions support enough flexibil-

ity to realize different unitary transforms but note that they are not optimized

as trainable parameters during ONN training. The diagonal matrix unit (Σ

unit) is built using an array of MZI attenuators for magnitude and phase

control.

The schematic of the testing setup is shown in Fig. 2.13. Continuous-

wave (CW) light of different wavelengths is coupled in different input grating

couplers separately. The input modulators and phase shifters of the BPNC

are programmed by a 40-channel digital-to-analog converter (DAC). Off-chip

photodetector arrays will receive the output signals, which will subsequently

be read using oscilloscopes. A microcontroller (Raspberry Pi 4) is used to write

electrical signals to the DAC and read the output signals from oscilloscopes.

The measurement data are processed by computers to train and implement

the DNN model.

We construct a 2-layer CNN (Fig. 2.15(a)) with our BPNC and bench-

mark its performance on a handwritten digits classification dataset MNIST [115].

We use MVM operations to implement CNNs with a widely-applied tensor un-

52

rolling method (im2col). Large-size tensor operations are partitioned into 4×4

blocks and mapped onto our BPNC. The partial product accumulation and

non-linear activation functions, e.g., ReLU, are simulated on computers.

To boost the accuracy and make our BPNC tolerate various physical

Figure 2.13: Experimental setup of OSNN. (a) Schematic of our OSNN test
flow. The entire MVM is first partitioned into multiple 4×4 blocks, and each
block is implemented optically on a butterfly-style photonic-electronic neural
chip (BPNC). (b) shows the wire-bonded photonic chip and its starting/ending
electrical pin numbers, while (c) is the photography of the chip testing setup.
The parameters and the input signals are programmed by a multi-channel
digital-to-analog converter (DAC), while the output signals are read by the
oscilloscope. Both the oscilloscope and the DAC are controlled by a microcon-
troller. The MVM results are provided to the computer for data processing in
order to train and deploy the DNN.

53

variations and noises, we adopt an AI-assisted variation-aware training flow,

as shown in Fig. 2.14. The real chip responses are measured and used to train

the differentiable PIC estimator (DPE) to model the behavior of the chip.

Then, this accurate chip model is integrated into our variation-aware training

flow to boost the deployment robustness.

The confusion matrix depicting the handwritten digit recognition pre-

diction results is shown in Fig. 2.15(b). Figure 2.15(e) shows the output dis-

tribution of different handwriting digit inputs. Our experimental results show

that when the voltage control resolution is set to 3-bit (8 attenuation levels

Figure 2.14: Proposed hardware-aware training framework where the differ-
entiable PIC estimator learns the real chip’s behavior and guides the OSNN
weights toward a robust subspace.

54

Figure 2.15: Experimental data of digit recognition with the OSNN. (a)
Structure of the CNN, the convolution is realized by OSNN with the im2col
approach. The first convolutional layer has one input channel and 16 out-
put channels with a stride of 2. The subsequent convolutional layer has 16
input/output channels with a stride of 1, and the size of the convolutional
kernel is 3×3. After adaptive average pooling, we have 5×5×16=400 hidden
features, followed by a linear classifier with 10 outputs. (b) The confusion ma-
trix of the trained OSNN on MNIST, showing a measured accuracy of 94.16%.
(c) Experimental results of convolving two input images with convolution ker-
nels of size 3×3 in our OSNN. (d) The predicted probability distribution of
our OSNN on four selected test digits in the MNIST dataset.

55

Evaluate on ML Tasks (Expressivity)

15

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d
 P

ro
b
a
b
ili

ty

>94% accuracy

2-layer CNN (1.6k #params)

MNIST

3-bit weight resolution

Fixed butterfly transform

*Reference accuracy 85.6%

ResNet-20 CIFAR-10

ReRAM Crossbar 4-bit weight (GEMM)

[Wan et al., Nature, Aug. 2022]

horse

>85% accuracy

ResNet-20 (0.27M #param)

CIFAR-10

3-bit weight resolution

Fixed butterfly transform

C. Feng*, J. Gu* (co-first), H. Zhu, Z. Ying, Z. Zhao, D.Z. Pan, R.T. Chen, “A compact butterfly-style silicon

photonic-electronic neural chip for hardware-efficient deep learning”, ACS Photonics, Nov. 30, 2022.

96.5% accuracy

VGG8 (4M #params)

COVID Chest X-ray

3-bit weight resolution

Fixed butterfly transform

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d
 P

ro
b
a
b
ili

ty

COVID Normal
Other Viral

Pneumonia
Classes

Figure 2.16: Evaluation on larger benchmarks: >85% accuracy with ResNet-
20 on CIFAR-10 [112] and 96.5% accuracy with VGG-8 on Chest X-ray-based
COVID detection [28].

for each MZI attenuator in the Σ unit), the inference accuracy of the CNN

reaches 94.16% in our experimental demonstration, slightly below the simu-

lated value of 94.59%. We further evaluate our chip on larger benchmarks

to show the superior expressivity of our butterfly photonic tensor core design.

On ResNet-20 CIFAR-10 image classification and VGG-8 Chest X-ray COVID

detection tasks, our 3-bit photonic neural chip realize 85% and 96.5% accu-

racy, respectively, comparable to digital software models, which shows great

application potential in different practical use domains. Figure 2.17(b) shows

that after variation-aware training, our OSNN shows better noise tolerance

compared to hardware-unaware training with higher accuracy under various

noise intensities.

This 4×4 BPNC can implement photonic neural computing with 3×

56

fewer trainable optical components compared to MZI-based ONN architectures

designed for general MVM [171], resulting in a ∼2× smaller footprint and

∼12× lower optical propagation delay. In Fig. 2.17(a), we can see the circuit

footprint advantages of our butterfly structure will scale up to 4× with 32×32

block sizes. The optical delay can further be improved by 14× when the matrix

size increases to 32×32.

Figure 2.17: Experimental setup of OSNN. (a) Area and optical delay scaling
with different matrix sizes. (b) Variation-aware training flow boosts the noise
robustness of BPNC.

57

2.2.6 Summary

In this work, we propose a hardware-efficient butterfly-style optical neu-

ral network architecture. Our proposed ONN architecture is inspired by block-

circulant matrix representation and efficiently realizes matrix-vector multipli-

cation via photonic butterfly transform, theoretically saving 2.2∼3.7× area

cost compared to the previous MZI-based ONN. We extend the proposed ar-

chitecture to an optical microdisk-based frequency-domain CNN, and propose

a trainable transform structure to enable a larger design space exploration.

Our proposed training flow performs coarse-grained and fine-grained struc-

tured pruning to the butterfly circuit blocks and phase shifters in the butterfly

transforms and further improves hardware efficiency with negligible accuracy

degradation. We can realize over 80% power reduction in CNNs, over 90%

power reduction in MLPs, and much better variation-robustness under device-

level noises than prior work. We taped out a 4×4 butterfly-style photonic

neural chip and experimentally demonstrated its usage on different ML tasks

to show its great potential in various ML applications.

2.3 SqueezeLight: A Multi-Operand Ring-Based ONN
with Cross-Layer Scalability

So far, we have discussed how to design specialized circuit structures

beyond traditional universal programmable linear units to trade redundant

matrix expressivity for higher hardware efficiency. However, prior state-of-

the-art (SoTA) ONN designs still encounter scalability issues in terms of

58

high area cost. Though incoherent micro-ring resonator (MRR)-based ONN

is considered one of the most compact ONNs given the small MRR device

sizes [131, 190, 262, 145, 183], it reaches the current area lower bound, i.e.,

one optical device per multiply-accumulate (MAC) operation. It is technically

challenging to further improve compactness by using traditional MRRs. More-

over, the high usage of wavelength limits the scalability of MRR-ONNs since

practical weight matrix dimensions are far beyond the maximum wavelengths

supported by modern dense WDM (DWDM) techniques, leading to unsatis-

fying throughput due to weight bank reuse [183]. MRR-ONNs also encounter

robustness concerns under various noises and variations [183].

To break the current area lower bound of integrated ONNs, in this

work, we propose a novel ONN architecture that squeezes matrix operations

into arrays of ultra-compact customized multi-operand micro-ring resonators

(MORRs), dubbed SqueezeLight, to enable scalable, efficient, and robust

optical neurocomputing. We extend SqueezeLight to a separable optical

CNN architecture with trainable MORR nonlinearity, showing augmented ex-

This SqueezeLight section is based on the following publications.

1. Jiaqi Gu, Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Mingjie Liu, Ray T. Chen,
and David Z. Pan, "SqueezeLight: Towards Scalable Optical Neural Networks with
Multi-Operand Ring Resonators," IEEE/ACM Proceedings Design, Automation and
Test in Europe (DATE), Feb. 2021.

2. Jiaqi Gu, Chenghao Feng, Hanqing Zhu, Zheng Zhao, Zhoufeng Ying, Mingjie Liu,
Ray T. Chen, and David Z. Pan, "SqueezeLight: A Multi-Operand Ring-Based Opti-
cal Neural Network with Cross-Layer Scalability," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), Jul. 2022.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

59

pressiveness and order-of-magnitude higher software training scalability than

the original MORR-based CNN. The main contributions are as follows,

• Scalability: we explore the analog usage of multi-operand ring res-

onators to construct an ultra-compact ONN architecture with built-in

nonlinearity, surpassing prior integrated ONNs by one order of magni-

tude in footprint.

• Efficiency: we employ fine-grained structured pruning in SqueezeLight

for a quadratic efficiency boost.

• Robustness: we propose a sensitivity-aware learning technique to over-

come thermal crosstalk and device variations to improve noise resilience.

• Trainability: We propose a novel separable optical CNN architecture

with order-of-magnitude higher training scalability to support million-

parameter ONNs.

• Expressiveness: We explore parametric MORR neurons with train-

able nonlinearity to fortify the advantages of built-in nonlinearity of

SuqeezeLight, leading to an average of +2.1% accuracy improvement

on various vision recognition tasks.

2.3.1 Preliminaries

This section introduces the background knowledge of ONNs and our

motivations.

60

2.3.1.1 Various Neural Network Designs

Convolutional neural networks (CNNs) learn discriminative represen-

tation via convolution-based linear operations. Kernelized NNs [137] have

shown competitive performance by replacing convolutions with nonlinear pro-

jection kernels. Various linear and nonlinear convolution variants with better

efficiency and robustness have been proposed, e.g., hyperbolic tangent con-

volution [132] and AdderNet [25]. In this work, we leverage the analog com-

puting power of multi-operand ring resonators to construct compact optical

neurons with built-in nonlinearity, achieving scalable optical neurocomputing

with competitive model expressiveness.

2.3.1.2 Incoherent Optical Neural Network Architectures

Recently, ONN architectures have been rapidly evolving [171, 190, 253,

70, 74, 131, 262, 71, 72, 145]. Incoherent ONNs push the limits in circuit foot-

print by using MRR weight banks to implement matrices [131, 190]. However,

the scalability of MRR-based ONNs is inevitably limited by the size of MRR

weight banks and the high usage of wavelength. To break through the ONN

scalability bound, in this work, we propose a more compact ONN architecture

SqueezeLight with a lower device and wavelength usage.

2.3.1.3 Multi-Operand Ring Resonators

A multi-operand logic gate (MOLG) has been experimentally demon-

strated to achieve multi-operand Boolean functions on a single MRR, achiev-

61

w0 w1

w2wk-1...

x0 x1

x2xk-1

Input
Port

Through
Port

(a)

1550 1553 1555 1557
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength
Shift

Red-shift

(b)

Figure 2.18: (a) All-pass k-operand MORR. (b) Through port light intensity
transmission of an all-pass MORR.

ing ultra-compact optical digital computing [231]. Figure 2.18(a) shows the

structure of an all-pass multi-operand ring resonator (MORR). Unlike the tra-

ditional MORR with a single controller, an MORR has k active phase shifters

independently controlled by k electrical signals x, each creating a phase shift

ϕi(xi). k phase shifts are accumulated ϕ =
∑

i ϕi(xi) and lead to a spec-

trum redshift ∆λ, such that the transmitted light intensity on the through

port changes accordingly. The transmission spectrum of an MORR is demon-

strated in Fig. 2.18(b). A k-operand all-pass MORR has the following transfer

function,

y = f(ϕ) =

∣∣∣∣ r − ae−jϕ

1− rae−jϕ

∣∣∣∣2d, ϕ =
k−1∑
i=0

ϕi(xi), ϕi(xi) ∝ wix
2
i , (2.26)

where xi is the electrical input voltage, ϕi(·) is the phase shift response curve

of the actuator, ϕ is the accumulated round-trip phase shift of the MORR,

r and a are self-coupling coefficient and single-pass amplitude transmission

factor, and d, y ∈ [0, 1] are the light intensity on the input port and through

port, respectively. The weight wi on the i-th input can be encoded into differ-

62

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

λ

...... ...

...

......

yM-1

2M
rows

Q/2=N/(2k) columns

On-chip Laser

Frequency Comb

Multi-operand Resonator

Photodiode

WDM Multiplexer

x0 Electrical Input

...

Positive
Rail

(>0)

Negative
Rail

(<0)

Transimpedance Amplifier

Differential
Output

y0TIATIA

TIATIA TIATIA

...

d0 d1 dQ/2-1

Micro-ring Modulator

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

Learnable Balancing Factors

MORR-based Crossbar Array

𝑑 𝑞

𝑑 𝑞

Figure 2.19: Proposed MORR-based ONN architecture SqueezeLight with
learnable neuron balancing.

ent actuator arm lengths, different material properties, different input ranges,

reconfigurable controller resistances, etc [231]. Instead of using MORR as a

digital logic gate [231], we explore the analog usage of MORRs for optical

neuromorphic computing.

2.3.2 Proposed MORR-based ONN Architecture

In this section, we present design details on the proposed SqueezeLight

shown in Fig. 2.19 and introduce essential techniques for scalability and effi-

ciency improvement. We summarize key notations for SqueezeLight in

Table 2.8.

2.3.2.1 MORR-based Photonic Neuron

Different from the prior GEMM-based ONN design concept that only

focuses on universal linear operations, we target unique nonlinear optical

neurocomputing based on an ultra-compact MORR device. Recall that in

Eq. (2.26), we can squeeze length-k dot-product into the round-trip phase shift

63

Table 2.8: Notations used in SqueezeLight.

M ×N Matrix dimensions
P ×Q Grid dimensions in blocking
k Block size
kmax Max #operands in an MORR
k′ #Non-zero weights per row after pruning
w/W Weights/weight matrix
x Input signals
ϕ Round-trip phase shift
ϕ̂ Round-trip phase shift after crosstalk
∆ϕ Phase noise
f(·) Nonlinear y − ϕ transmission
d Learnable balancing factors
G TIA gain
d̃ Balancing factor that absorbs G
γ/Γ Intra-MORR crosstalk coupling factor/matrix

of a single MORR. This dot-product result will be probed by the input light

signal and activated by the MORR nonlinear transmission curve. The idle

device will be initially calibrated to the on-resonance state, where the trans-

mitted light intensity reaches the minimum. Then, k input voltage control

signals will jointly create a phase shift to modulate the input light intensity.

Hence, we model the MORR neuron as,

y = f(
k−1∑
i=0

ϕi)d ∝ f
(k−1∑

i=0

wix
2
i

)
d, s.t. wi ≥ 0 (2.27)

where f(·) is the nonlinear y−ϕ transmission curve. Note that we are justified

to assume all MORR nonlinear curves are identical because the shape of f(·)

keeps almost the same within the practical wavelength range [195].

64

+ + -

+

+ + -

+ -

Block-structured matrix

-

-

-

if <0, swap rail

+ - -

+

+ - -

- -

M=Pk

+

+

+

N=Qk

Figure 2.20: Block-structured matrices with learnable balancing factors.

2.3.2.2 SqueezeLight Architecture

Based on the above MORR neuron, we propose a novel ONN archi-

tecture SqueezeLight shown in Fig. 2.19. We assume to map an M ×

N weight matrix onto this MORR array. The matrix is partitioned into

P × Q sub-matrices with size of k × k, where P = ⌈(M/k), Q = ⌈(N/k)⌉⌉.

SqueezeLight starts with an on-chip frequency comb to generate multiple

wavelengths (λ0, λ1, · · ·). Then, narrow-band MRRs are placed as wavelength-

specific modulators D = (d0, · · · , dQ/2−1) ∈ [0, 1] to achieve an adaptive dy-

namic MORR transmission range. Modulated probing light signals are evenly

distributed into 2M rows. By placing a series of MORRs to form an array,

we can implement a nonlinear ONN layer. Theoretically, we need total 2M

rows and Q
2
= N

2k
columns to implement an M × N weight matrix W . The

q-th MORR in one row will resonate at the wavelength λq and apply projec-

tion on a segment of length-k vector as yq = f(
∑k−1

i=0 wqix
2
qi)dq. At the end

of the m-th row, a photo-detector will detect accumulated light intensity as

Im =
∑Q/2−1

q=0 ymq.

Differential Detection for Full-range Weights. Typically, limited by the

65

physical implementation, the weights are restricted to be non-negative, which

could limit the model representability. Hence we introduce a differential struc-

ture for full-range outputs and augment the expressiveness with learnable neu-

ron balancing factors shown in Fig. 2.19. One row is halved into two adjacent

rows as the positive rail I+ and negative rail I− respectively. The differential

photo-current structure at the end enables full-range of outputs, equivalently

forcing half weights, i.e., weights on rail I−, to be non-positive values,

ym = G(I+m − I−m) = G
(Q/2−1∑

q=0

ymq −
Q−1∑

q=Q/2−1

ymq

)
, (2.28)

where G is the gain of the transimpedance amplifier (TIA), which can be used

to extend the signal range. A direct benefit from this differential structure is

that we can save 50% of wavelength usage by partitioning one width-Q row

into two width-Q
2

rails.

Learnable Balancing Factors. With d=1, all MORRs are treated with

the same importance as they have the same dynamic range ymq ∈ [0, 1],∀q,

which loses the degree of freedom to assign different weights to different partial

product results. To resolve this, we allow learnable MORR balancing factors

D̃ = {d̃q|d̃q ∈ [−Gmax, Gmax], d̃q = d̃q (mod) Q
2
, q ∈ [0, Q − 1]} and encode

them in the MRRs at the beginning. Note that the maximum TIA gain Gmax

expands the implementable range to d̃ ∈[-Gmax, Gmax]. A column of MORRs

share the same balancing factor as they share the same wavelength. Hence the

MORR neuron is augmented as follows,

ym =

Q−1∑
q=0

f
(k−1∑

i=0

wmqix
2
qi

)
d̃q. (2.29)

66

A natural question is how we can achieve full-range balancing factors

as all-pass MRRs can only achieve non-negative transmission modulation. It

turns out that by simply swapping two MORRs on the opposite rails, one

can equivalently realize a negative factor d̃ < 0 as shown in Fig. 2.20. This

technique enables a learnable output range for different MORRs and thus

boosts the expressiveness of SqueezeLight.

2.3.2.3 Peripheral Units

We briefly discuss peripheral units, with all system-level details being

omitted since advanced system-level and architectural innovations in photonic

NN accelerators [131, 262] are mostly applicable to SqueezeLight.

Normalization. Normalization operations, e.g., BatchNorm, can be im-

plemented by the TIA gain and voltage signal offset with negligible latency

overhead.

Nonlinear Activation. Since MORR-based neurons have built-in nonlin-

earity, extra electrical activations are not required.

Electrical Dataflow. The input signals/weights are loaded from high-

bandwidth SRAM or ultra-fast photonic racetrack memory banks [182] and

converted to analog signals through electrical digital-to-analog converters (DACs).

The photo-currents are amplified by TIAs. Direct optical-electrical-optical

(O-E-O) conversions will be used to cascade ONN layers without voltage-to-

transmission encoding.

67

2.3.2.4 Area Reduction via Block-Squeezing

Thanks to the MORR device, we can squeeze a vector dot-product into

one micro-ring. To achieve a quadratically more compact design, we further

squeeze a matrix into one MORR via a block-squeezing method. Inspired

by structured neural networks that restrict the weight matrix structure [40,

70] for better efficiency, we introduce this concept to SqueezeLight for

higher compactness. An M × N block-structured matrix W contains P × Q

square sub-matrices {wpq}P,Qp,q=0, each being a k× k structured matrix. We use

a circulant matrix as an example [40], where each column is essentially the

circular shift of its length-k primary vector on the first column. Due to row-

wise parameter sharing, the sub-matrix multiplication wpq ·xq can be efficiently

squeezed into one k-operand MORR. Figure 2.21 visualizes the mapping from

a 4× 4 structured sub-matrix to an MORR. At time step t=0, we implement

the first row. Then we shift the inputs around the ring to align with the

corresponding weights on the second row and repeat this process. After k

time steps with input rotation, we reuse the same MORR and finish an entire

circulant matrix multiplication. In this way, we successfully achieve O(k2)

times device usage reduction and save k times wavelength usage.

2.3.2.5 Sparsity Exploration via Fine-Grained Structured Pruning

For an M × N block-structured matrix, the total component usage

adds up to N
2

MRRs and (MN
k2

) k-operand MORRs. Given fixed M and N , a

larger k means fewer blocks and less MORR usage. However, implementing

68

Area Reduction: Block-Squeezing

13 April 2022 9

w0 w1

w2w3

x0 x1

x2x3

w0 w1

w2w3

x1 x2

x3x0

w0 w1

w2w3

x3 x0

x1x2

w0 w1

w2w3

x2 x3

x0x1

+ + -

+

+ + -

+ -

Block-structured matrix Structured sub-matrix

-

-

-

if <0, swap rail

+ - -

+

+ - -

- -

M=Pk

+

+

+

N=Qk

w2w0 w1 w3

w2w0 w1w3

w0 w1w3w2

w0w3w2w1

x0

x1

x2

x3

×

Figure 2.21: Squeezing a 4×4 block into one MORR using 4 cycles. The right
part unfolds the input rotation mechanism temporally in 4 cycles on a single
MORR.

MORRs with too many actuators can be challenging in practice. If one has a

tight device usage budget, it is preferable to use a large sub-matrix that could

exceed the MORR capacity, i.e., k > kmax. To overcome this, we prune each

sub-matrix with a fine-grained structured sparsity. In Fig. 2.22, less important

entries in the primary vector are forced to zero, leaving k′ non-zero weights.

The same sparsity pattern will be automatically imposed on other columns

according to the pre-defined matrix structure. Our block-squeezing technique

allows mapping the pruned sparse block with k′ ≤ kmax into one MORR to

maintain the highest compactness. We adopt a two-stage pruning procedure

with learning rate rewinding to train SqueezeLight with structured spar-

sity, described in Alg. 1. We first pre-train and prune the weights with a target

sparsity. Then we re-train the model from scratch with a rewound learning

rate to achieve better accuracy than traditional post-training fine-tuning.

69

Structured sub-matrix

Fine-grained sparse
sub-matrix

w0 w1 w2 w3 w4 w5 w6 w7 Too many controllers

w0 w1 w2 w3 w4 w5 w6 w7

w0 w2

w5w7

x0 x2

x5x7

Implementation-friendly

Figure 2.22: Fine-grained pruning enables squeezing a 8×8 structured block
into a 4-op MORR.

2.3.2.6 Robustness Boost via Sensitivity-Aware Optimization

For analog computing, noise robustness is considered a practical con-

cern [74, 252, 171, 261, 183, 142]. For MORRs, we consider random phase

variations and intra-MORR crosstalk as the main non-ideal effects. The

random variations can be estimated as a Gaussian noise on the phase shift

∆ϕ ∈ N(0, σ2). We formulate the dynamic intra-MORR crosstalk among k

actuators as Φ̂ = Γ ·Φ governed by a coupling matrix Γ,
ϕ̂0

ϕ̂1

· · ·
ϕ̂k−1

 =


γ0,0 γ0,1 · · · γ0,k−1

γ1,0 γ1,1 · · · γ1,k−1
...

...
γk−1,0 γk−1,1 · · · γk−1,k−1




ϕ0

ϕ1

· · ·
ϕk−1

 , (2.30)

Note that the crosstalk effect |ϕ̂0−ϕ0| is dynamically determined by the weight

w and input x, but the coupling matrix Γ is constant after manufacturing. The

70

self-coupling factor γi,i = 1 and all mutual coupling factors γi,j are basically

determined by the spacing among phase shifters [140]. Hence we assume that

they share the same value γ. We found that intra-MORR crosstalk is equiva-

lent to a constant scaling factor on ϕ as follows,

ŷm =

Q−1∑
q=0

f
(
(1 + (k′ − 1)γ)ϕmq +∆ϕ

)
d̃q. (2.31)

This equation implies that pruning can reduce the crosstalk noise since only

the left k′ actuators have crosstalk after pruning. To better understand the

sensitivity of MORR neurons to crosstalk, we show the transmission curve

in Figure 2.23. We observe that the transmission curve f(·) has different

sensitivity (gradient) at different wavelengths. Crosstalk effects induce an

extra redshift in the spectrum, forcing all ϕ < ϕs to have higher sensitiv-

ity and ϕ ≥ ϕs to have less sensitivity. Based on this observation, we in-

troduce a sensitivity-aware optimization method to improve the robustness

ofSqueezeLight, shown in Alg. 1. We adopt the following the objective to

train an L-layer SqueezeLight,

L=L0(x;W , D̃,Γ,∆ϕ) + α

L−1,M−1,Q−1∑
l,m,q=0

∇ϕf(ϕ̂lmq +∆ϕ), (2.32)

where L0(x;W , D̃,Γ,∆ϕ) is the task-specific loss with noise injection, and

the second term, denoted as LS(Γ,∆ϕ), is a sensitivity-aware penalty term

weighted by α. This method jointly considers variations and crosstalk with a

gradient-based sensitivity penalty, enabling close-to-ideal test accuracy.

71

Normalized Round-trip Phase Shift (rad)

G
ra

d
ie

n
t

Tr
an

sm
is

si
o

n

Figure 2.23: Transmission curve f and its gradient∇ϕf with thermal crosstalk
and sensitivity-aware training.

2.3.3 Hardware Feasibility and Efficiency

We theoretically analyze the hardware feasibility and efficiency, and

qualitatively compare essential features with previous ONNs.

2.3.3.1 MORR Physical Feasibility

Our MORR leverages the analog property of a successfully demon-

strated digital MOLG [231]. We discuss how to encode weights and apply

inputs to the analog MORR device. We can use high-speed DACs and high-

speed E-O controllers to switch the input signals. Weight reprogramming is

much less frequent than input signal switching. There are multiple possible

approaches to implementing weights as modulation coefficients. If the weights

are pre-defined and fixed, we can simply use controller length to encode the

weights with zero energy cost in weight encoding. If the weights need a dy-

namic update, we can implement the weights as power scaling factors on the

72

Algorithm 1 Training algorithm of SqueezeLight with fine-grained struc-
tured pruning and sensitivity-aware optimization.

Input: Initial weights W 0 ∈ RP×Q×k and D̃0 ∈ RQ/2, pruning percentage
T = 1− k′

k
, pretraining step tpre, initial step size η0, decay factor β, penalty

weight α, variation ∆ϕ, and crosstalk coupling matrix Γ;
Output: Converged wt, dt, and a pruning mask M ∈ ZP×Q×k;
1: for t← 1, · · · , tpre do ▷ Stage 1: Pretraining
2: L← Lt

0(x;W
t−1, D̃t−1)

3: (W t, D̃t)← (W t−1, D̃t−1)− ηt−1(∇WL,∇D̃L)
4: ηt ← ηt−1β ▷ Learning rate decay
5: end for
6: ηt ← η0,M← 1 ▷ Learning rate rewinding and initialize mask
7: for all W t

pqi ∈W t do
8: if W t

pqi < percentile(W t
pq, T) then

9: Mpqi ← 0 ▷ Compute pruning mask
10: end if
11: end for
12: while not converged do ▷ Stage 2: Fine-grained pruning
13: L← Lt

0(x;M⊙W t−1, D̃t−1,Γ,∆ϕ) + αLS(Γ,∆ϕ) ▷ Sensitivity-aware
regularization

14: (W t, D̃t)← (W t−1, D̃t−1)− ηt−1(∇WL,∇D̃L)
15: ηt ← ηt−1β ▷ Learning rate decay
16: end while

input signals, e.g., program the electrical attenuation units to modulate the

input signals. Low-speed electrical attenuators are enough to handle low-

frequency weight reprogramming in most NN workloads.

Note that one may have concerns about the limited finesse of the low-Q

MORR we show. This is a proof-of-concept example and not necessarily the

most suitable ring design for SqueezeLight. In later simulation results, we

show that our MORR array works well with high-Q MORRs. Simply shrinking

the range of round-trip phase shift ϕ, either by scaling down the power of phase

73

Table 2.9: Symbolic hardware cost and qualitative feature comparison. The
matrix is M × N with size-k blocks. B is the DWDM capacity. For a fair
comparison, the device counts are converted to #MRRs based on real device
sizes [171, 84, 70]. The area ratio βa and power ratio βp between one MZI
(240×40 µm2 [171], ∼48mW [84]) and one MRR (20×20 µm2,∼10 mW [179])
are βa=24 and βp=4.8.

MZI-ONN [171] Slim-ONN [253] FFT-ONN [70] MRR-ONN-1 [131] MRR-ONN-2 [190] SqueezeLight
#MRRs βaMN ∼ βa

2
MN ∼ βa

4
MN M min (N,B) M min (N,B) 2M

k
min(N

2k
, B)

#Wavelength 1 1 1 min (N,B) min (N,B) min (N
2k
, B)

Latency 1 1 1 ⌈N
B
⌉ ⌈N

B
⌉ k⌈ N

2kB
⌉

Power βpMN ∼ βp

2
MN ∼ βpMN M min (N,B) M min (N,B) 2M

k
min(N

2k
, B)

Nonlinearity Electrical Electrical Electrical Electrical Electrical Built-in
Output range Non-negative Non-negative Non-negative Non-negative Full range Full range
Control cost High Medium-High High High High Medium

tuning signal x or reducing the tuning coefficient w, can create the same y−ϕ

nonlinear curve as the low-Q MORR. Hence, we do not require a flat MORR

spectrum. Instead, MORRs with high quality values and finesse are actually

preferred to enable a larger WDM capacity for higher throughput and less

spectrum crosstalk.

2.3.3.2 Symbolic Analysis on Area, Latency, and Power

In Table 2.9, our architecture outperforms three coherent ONNs by

a large margin [171, 253, 70]. We focus on the comparison with the most

compact designs MRR-ONN-1 [131] and MRR-ONN-2 [190] in terms of area

cost A, latency τ , and power P. We assume the current DWDM capacity

supports maximum B different wavelengths [191, 233].

First, the size and power of an MRR and a k-operand MORR can

be assumed the same since they have the same phase tuning range, i.e., half

of the resonance curve. Therefore, we focus on the number of resonators

74

Table 2.10: Comprehensive performance comparison between SqueezeLight
and MRR-ONN. †To keep the same area cost, SqueezeLight uses 16 32×16
MORR arrays, and MRR-ONN uses 16 64×16 MRR weight banks in the accel-
erator. We use DNN-Chip Predictor [251] to search for an optimal hierarchical
tiling strategy for SqueezeLight and MRR-ONN, respectively, and use their
optimal tiling strategies for energy simulation.

Design Area ↓ Power ↓ Latency ↓ Operate Freq ↑ Comp. Density ↑ Energy Eff. ↑ † Sys. Energy ↓
(mm2) (W) (ps) (GHz) (TOPS/mm2) (TOPS/W) (µJ)

SqueezeLight 5.12 6.972 (-48%) 141.3 (-21.4%) 7.0 (+25%) 11.3 (4.9×) 8.32 (9.8×) 0.2440 (-63.5%)
MRR-ONN 5.02 13.402 179.7 5.6 2.3 0.85 0.6676

in the discussion. We denote the computation efficiency as E = (APτ)−1.

SqueezeLight achieves the following improvement over two MRR-ONNs

when the matrix dimension is smaller than the DWDM capacity, i.e., N < B,

Aours

Aprev

≈ Pours

Pprev

≈ 1

k2
,
τours
τprev

=
k⌈N/B⌉
⌈N/(2kB)⌉

=k,
Eours

Eprev

≈ k3. (2.33)

Once the matrix width is larger than the maximum number of wavelengths

available as N
2k

< B < N , we can achieve,

Aours

Aprev

≈ Pours

Pprev

<
2

k
,
τours
τprev

=
k

⌈N
B
⌉
,
Eours

Eprev

≈ Bk3

N
>

k2

2
. (2.34)

If the weight matrix is even larger, i.e., B < N
2k

, we have

Aours

Aprev

≈ Pours

Pprev

≈ 2

k
,
τours
τprev

≈ 1

2
,
Eours

Eprev

≈ k2

2
, if B <

N

2k
. (2.35)

It can be observed that our ONN gains more hardware efficiency advantage as

B scales up, thus our scalability grows together with the development of the

DWDM technology.

75

2.3.3.3 Qualitative Feature Comparison

In Table 2.9 we compare several key features of 6 ONN designs. Pre-

vious ONNs mainly focus on general matrix multiplication and offload the

nonlinear activation to the electrical domain. In contrast, our proposed neu-

ron leverages the built-in nonlinearity in MORRs to eliminate the overhead

from electrical activation, enabling higher speed and efficiency. In terms of

model expressivity, MRR-ONN-1 [131] has a limited solution space with only

positive weights, while our designs support full-range weights with augmented

representability via learnable balancing factors. SqueezeLight also benefits

from lower control complexity and higher efficiency due to direct signal encod-

ing vx = x, while previous MRR-ONNs require additional nonlinear mapping

to encode inputs/weights into voltage signals vx =
√

ϕ−1(f−1(x)).

2.3.3.4 Quantitative System Performance Evaluation

We give a more rigorous performance analysis on SqueezeLight and

compare it with MRR-ONNs.

Compute Density and Delay. We assume to implement a 256×256 block-

structured (k=8) weight matrix. We assume the ring spacing is 60 µm. The

4-op MORR radius is 20 µm, and the MRR radius is 5 µm. The WDM

capacity is 16. If the MORR array contains 32×16 4-op MORRs, it takes

roughly 32× 16× 1002µm2. Given the same footprint budget and same WDM

capacity, we can construct a 64× 16 MRR weight bank.

Taking into account the delay by modulators (10 ps), photodetec-

76

tors (10 ps), ADCs (100 ps), and the optical path (100µm × 16 × ng/c =

21.3 ps). The total delay of our MORR array is 141.3 ps, which corre-

sponds to an operating frequency of 7 GHz. Every cycle, our MORR ar-

ray can finish 8192 FLOPs. The compute density of SqueezeLight is
16×256×2 OPs

141.3ps×(32×16×100×100µm2)
= 11.3 TOPS/mm2. It takes SqueezeLight 16

cycles (2.26 ns) to implement the 256×256 matrix.

The latency for the 64×16 MRR weight bank is 10 + 10 + 100 +

(70µm × 2 × 16 × ng/c) = 179.7 ps, which corresponds to an operating

frequency of 5.6 GHz. Therefore, the compute density for MRR-ONN is
64×16×2 OPs

179.7ps×(64×16×70×70µm2)
= 2.3 TOPS/mm2. It takes the MRR-ONN 64 cycles

(11.5 ns) to implement this 256×256 weight matrix.

Power. We consider power consumption including laser, 8-bit DAC, 8-bit

ADC, ring locking, and ring programming. We use an 8-bit 10 GSPS ADC [1],

which consumes 39 mW per channel. Each high-speed microring modulator

approximately achieves 18 fJ/bit [179], which corresponds to the power Pring of

0.126 mW under 7 GHz. The static locking power Plock of each ring is around

Plock ≈ 0.5Pπ = 9.75 mW [179, 189]. For high-speed input x modulation, each

DAC power is PDAC = 3.92 mW [155, 93]. Since weight configuration is much

less frequent than input signals, typically, the weight DAC dynamic power can

be ignored. Based on the detection sensitivity and circuit insertion loss, the

laser power [146] is Plaser =
hν

η×IL2
2Nb+1 × freq. = 131.62 mW , where hν is

the photon energy at 1550 nm, η is the laser efficiency (0.2), IL is the insertion

loss (0.25 dB/ring), and Nb is the resolution (8-bit). The power consumption

77

for a 32×16 MORR array is

((32× 16 + 16)Plock + (32× 16)Pring) + Plaser

+ 256PDAC + 16PADC

≈ 5212.5 + 131.62 + 1003.52 + 624.00 mW

≈ 6.972 W.

(2.36)

The energy efficiency of the MORR array is 16×256×2 OPs
141.3 ps×6.972 W

= 8.32 TOPS/W .

For the 64×16 MRR weight bank, Pring is 0.101 mW under 5.6 GHz [179].

Each MRR needs extra weight configuration power [189] Pw = Pπ/(2×finesse) ≈

0.4875 mW , where the finesse is around 20 [179]. The total power is

(16Pring + (16× 64)(Plock + Pw)) + Plaser + 16PDAC + 64PADC

≈ 10640.8 + 214.99 + 50.18 + 2496 mW ≈ 13.402 W.
(2.37)

The energy efficiency of the MRR weight bank is 64×16×2 OPs
179.7 ps×13.402 W

= 0.850 TOPS/W .

System Energy Cost. We use a DNN-Chip Predictor [251] to simulate a

256×256 fully connected layer with a four-level memory hierarchy, including

DRAM, SRAM-based global buffer (GB), network-on-chip (NoC) which de-

scribes the spatial data tiling and the parallelism of the system, and register

files (RF). For SqueezeLight, we use 16 32×16 MORR array in the acceler-

ator. For MRR-ONN, we use 16 64×16 MRR weight banks in the accelerator.

We searched for optimal tiling strategies for them and applied them to those

two accelerators. The basic memory energy model is based on Eyeriss [23].

MRR-ONN consumes 0.5135 µJ on data movement. It consumes 0.1541 µJ

in computation. The total energy consumption of MRR-ONN is 0.6676 µJ .

78

In contrast, our sparse block-squeezing technique helps save 94% of the weight

loading cost, such that SqueezeLight only consumes 0.2237 µJ on data

movement. Plus the 0.0158 µJ in computation, the total energy consumption

SqueezeLight is 0.2440 µJ , achieving 63.5% overall energy reduction. We

summarize the above analysis in Table 2.10.

2.3.4 Extension to MORR-based Separable CNN with Augmented
Trainability

To enable a real scalable ONN design, the three most important metrics

are representability, hardware efficiency, and software trainability. Based on

the nonlinear MORR neuron, we have demonstrated an ONN architecture

with high hardware efficiency and representability in Fig. 2.19. However, the

unsatisfying trainability of the MORR-based ONN fundamentally restricts the

scalability of SqueezeLight. Specifically, for convolution (CONV) layers,

partial convolution results for each MORR need to be stored and activated by

the built-in nonlinearity. Such a mechanism turns out to consume considerable

GPU memory and training time. This software trainability issue motivates

us to design a more suitable architecture based on MORR arrays that can

fully unleash the scalability advantages of SqueezeLight with augmented

trainability.

2.3.4.1 MORR-based Separable CNN with Layer-Squeezing

An important trade-off in MORR-based ONN design is between rep-

resentability and trainability. Hence, we propose an MORR-based separable

79

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

...... y1

Cin /2 columns

...

y0
...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

MORR-based Crossbar Array

𝑑 𝑞

𝑑 𝑞

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

...... y1

Cin /2 columns

...

y0
...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

MORR-based Crossbar Array

𝑑 𝑞

𝑑 𝑞

Depthwise Conv

* *

Pointwise Conv

×

×

×

...

×
Cin

Cin

......

......

......

......

......
..

.
..

.
...... ..

.
..

.

𝑾𝐷 𝑾𝑃

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

......

yH’W’-1

Cin /2 columns

...

...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

Pointwise CONV

MORR Array

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

......

yH’W’-1

Cin /2 columns

...

...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

Pointwise CONV

MORR Array

TIA

TIA

TIA

Patch 0

Patch 1

Patch H’W’-1

Patch 0

Depthwise CONV

W’

H’

Cout

Cin

Patch 0

𝑾𝑃(: , :𝑪𝒊𝒏/𝟐 − 𝟏)

𝑾𝑃(: ,𝑪𝒊𝒏/𝟐:)

y0

Positive

Negative

Figure 2.24: Architecture of separable SqueezeLight. Squeeze depthwise
and pointwise convolutional layers into one MORR array.

CNN architecture that coincides with an advanced neural network design con-

cept, i.e., depth-wise separable convolution (DSCONV).

DSConv contains a depth-wise convolution (DWConv) with per channel

convolution and a point-wise convolution with 1×1 kernels (PWConv), which

can be taken as a low-rank decomposition of an original CONV. Such advanced

convolution is widely used in efficient NN architectures, e.g., MobileNet-family,

to trim unnecessary computations without degrading the representability. The

most exciting observation is the perfect match between DSConv and our

MORR array, shown in Fig. 2.24. In other words, we squeeze DWConv and

80

PWConv layers into one MORR array. A feature patch with size of Cin×K×K

will convolve with the DWConv kernel WD ∈ RCin×1×K×K , corresponding to

Cin length-K2 dot-products. Hence, we can assign a row of Cin MORRs to

implement it. Note that each k-operand MORR corresponds to one K × K

CONV filter. Then, PWConv will perform pointwise linear projection on all

channels with a kernel WP ∈ RCout×Cin×1×1 and generate the final feature map.

The pointwise linear projection can be directly mapped to the MRR-based bal-

ancing factors. To achieve balanced output, we need to split the MORR array

into a positive and a negative array, each implementing half of DSConv. The

negative array equivalently achieves the negative half of WP . The reason why

we do not adopt negative/positive rails on the same array is that we want to

maximize the parameter space of WP without weight sharing. Theoretically,

there will be H ′W ′ rows to map all feature patches. For different output chan-

nels, we can either duplicate the array for Cout times or reuse the array and

sequentially reprogram the MRR-based WP .

Compared with the original MORR CONV engine, this augmented

DSConv engine has the following advantages.

Excellent Trainability. When mapping one CONV layer to the original

MORR array using im2col, the largest intermediate partial product feature

map contains H ′W ′BPQk ≈ H ′W ′BCoutCin/k elements. In contrast, the

largest feature map in the DSConv module only contains H ′W ′BCin elements.

The training memory footprint is approximately improved by Cout/k times,

which significantly boosts the software trainability of our SqueezeLight.

81

0 200 400 600

Cin(Cout)

102

103

104

P
ea

k
M

em
(M

B
)

Mem (DATE’21)

Mem (TCAD’21)

(a)

0 200 400 600

Cin(Cout)

100

101

102

R
u
n
ti

m
e

(m
s)

Time (DATE’21)

Time (TCAD’21)

(b)

Figure 2.25: Peak GPU memory consumption (a) and average GPU run-
time (b) evaluation on an MORR-based CONV3x3 layer (DATE’21) and a
DSConv3x3 layer (TCAD’21) with different input/output channels.

Figure 2.25 shows 2-order-of-magnitude higher memory efficiency and run-

time reduction of the augmented SqueezeLight compared with the original

MORR-based CONV engine [66]. Hence, by filling the trainability gap, all

three aforementioned key metrics for scalable ONNs are met.

Compressed Model Size. This benefit naturally comes from the low-rank

parameter space of DSConv. The weight size is reduced from CoutCinK
2 to

CinK
2 + CoutCin, with a compression ratio of ∼ K2.

Patch-Level Parallelism. The original MORR array essentially performs

sequential matrix-vector multiplication, which processes one feature patch at

one time. In contrast, the augmented MORR array maps multiple image

patches to different rows in parallel, which share the same group of MRRs.

Another advantage of this patch-level parallelism is the massive reuse of MRRs

for WP . With the extensive MRR reuse, the advantages of ultra-compact

MORR neurons will not be diluted by the usage of MRRs.

82

2.3.4.2 Parametric MORR Neuron via Trainable Nonlinearity

Thanks to the augmented software trainability of the MORR-based

separable CONV engine, we are able to efficiently explore the representability

of SqueezeLight deeper. Moving beyond the fixed nonlinear transmission

curve of an MORR, we further explore more expressivity in our MORR-based

neuron via trainable nonlinearity. Inspired by previous work on learning acti-

vations for NNs, we try to adapt the shape and the sharpness of the nonlinear

curve by tuning the phase bias b and the input scaling factor s,

fb,s(ϕ) = f(sϕ+ b) = f(s
k−1∑
i=0

wix
2
i + b). (2.38)

Figure 2.26 shows how b and s change the nonlinearity applied to the dot-

product results. A dedicated biasing current can be applied to the actuators

on MORRs to tune the curve’s center wavelength. By scaling the heating

power range of x with the factor s, the sharpness of the nonlinearity can also

be efficiently tuned. Such tunable nonlinearity introduces extra non-convexity,

leading to stronger representability than conventional activation functions,

e.g., ReLU. In the later section, we will show the performance benefits of

our trainable MORR neuron.

2.3.4.3 Nonlinearity-aware Initialization

A proper initialization is critical to the convergence of nonlinear non-

convex optimization problems, especially for DNN training. Though various

normalization methods, e.g., BatchNorm, can relax the sensitivity of DNN

83

-3 -2 -1 0 1 2 3

φ =
∑
i wix

2
i

0.0

0.2

0.4

0.6

0.8

1.0

f
b
,s

(φ
)

s=1,b=0

s=1,b=-0.5

s=1,b=-1

s=0.5,b=0

s=0.5,b=-0.5

s=0.5,b=-1

Figure 2.26: Trainable nonlinearity curve of parametric MORR neurons with
different bias b and scale s. Curves highlighted in the shadow region are the
activation functions applied to the dot-product ϕ.

learning to parameter initialization, the built-in nonlinearity of MORRs still

requires appropriate weight distribution to avoid dot-product values falling

into saturation ranges. The second reason for a specialized initialization

method is the potential activation explosion due to normalized MORR output.

Each MORR has a normalized output range of [0, 1], such that the final ac-

tivation magnitude is nearly proportional to the number of MORRs cascaded

on one row.

Therefore, we show a nonlinearity-aware initialization algorithm to

maintain nearly constant variance after layer cascading. We first assume the

input x is normalized with zero center, i.e., E[x] = 0,D[x] = σ2
x, and the

statistics of non-negative weights are denoted as E[w] and D[w]. Based on

ϕ =
∑k−1

i=0 wix
2
i , thus we can derive the variance of the accumulated round-

trip phase shift of a k-segment MORR since x and w are independent random

84

variables,
D[ϕ] =k(E2[w]D[x2] + E2[x2]D[w] + D[w]D[x2])

=kσ4
x(2E2[w] + 3D[w]).

(2.39)

In our algorithm, the weights will be sampled from a non-negative uniform

distribution, i.e., w ∼ U(0, L). Thus Eq. (2.39) can be rewritten as,

D[ϕ] = kσ4
x

(
2
(L
2

)2
+

3L2

12

)
=

3kσ4
xL

2

4
. (2.40)

To solve L analytically, we need to know D[ϕ]. Considering the inter-MORR

crosstalk due to spectrum leakage, a typical spectral distance between two

adjacent wavelengths is at least 4 FWHM, where the full width half maximum

(FWHM) represents the peak width when the energy is reduced to 50%. We

heuristically and conservatively set a constraint to the maximum tuning range

(±2σϕ) of the round-trip phase shift, i.e., 4
√

D[ϕ] ≈ 3 FWHM. Now we give

the uniform distribution for the weights w,

morr_uniform(w) ∼ U
(
0, σ2

x FWHM
√

3

4k

)
. (2.41)

So far, we properly initialize weights w considering the MORR trans-

mission curve f(·). The next step is to initialize the learnable balancing factors

D̃ to keep the variance of the final activation the same as that of inputs x,

i.e., D[y] = D[x]. The target distribution of balancing factors is zero-centered

normal distribution, i.e., d̃ ∼ N(0, σ2
d̃
). Given the differential detection result

y =
∑Q−1

q=0 f(ϕ)d̃q, we can rewrite it as y =
∑Q/2

q=0 ∆f(ϕ)d̃q, where ∆f(ϕ) is

the equivalent differential MORR transmission between positive and negative

85

0 20 40 60 80 100

Epoch

75

85

95

A
cc

u
ra

cy
(%

)
train/kaiming

test/kaiming

train/morr

test/morr

(a)

0 20 40 60 80 100

Epoch

65

75

85

A
cc

u
ra

cy
(%

)

train/kaiming

test/kaiming

train/morr

test/morr

(b)

Figure 2.27: Compare the training and test accuracy curves on MNIST (a)
and FashionMNIST (b). We compare our proposed morr_uniform with the
kaiming initializer.

rails. We have E[∆f(ϕ)] = 0. Then we can derive the variance of the final

activation,

D[y] =
Q

2
(E2[∆f(ϕ)]D[d̃] + E2[d̃]D[∆f(ϕ)] + D[∆f(ϕ)]D[d̃])

=
Q

2
D[∆f(ϕ)]σ2

d̃
= QD[f(ϕ)]σ2

d̃
= σ2

x.

(2.42)

The variance of the balancing factor is given by

D[d̃] =
σ2
x

Q D[f(ϕ)]
≈ σ2

x

Q · g2fD[ϕ]
=

16σ2
x

9Q · g2f · FWHM2 , (2.43)

where gf is a linear approximation to the gradient of the nonlinear transmis-

sion, i.e, gf = f(ϕc+2FWHM)−f(ϕc)
2FWHM

, where ϕc is the on-resonance phase shift.

Now, we show an ablation study to validate the effectiveness of the

proposed nonlinearity-aware initialization method. From the training curves

shown in Figure 2.27, we observe considerably faster convergence and higher

test accuracy by using our proposed MORR-aware initialization method. In

the following experiments, we will use the proposed initialization by default.

86

2.3.5 Experimental Results

We conduct optical simulation to validate the functionality and evaluate

SqueezeLight on MNIST [115], FashionMNIST (FMNIST) [222], SVHN [149],

CIFAR-10 [112], and CIFAR-100 dataset. All models are implemented with

a PyTorch-centric ONN library TorchONN [75]. All ONNs are trained for

100 epochs using the Adam optimizer. Quantization-aware training [258] is

applied to perform 8-bit weight/input/activation quantization.

2.3.5.1 Functionality Validation via Optical Simulation

One MORR Neuron. The MORR-based neuron is simulated using the com-

mercial Lumerical INTERCONNECT tool for functional validation. Figure 2.28

plots the theoretical and simulated outputs of a 4-operand MORR under 1- to

4-bit precision. The design specification of the MORR is as follows. Radius

R = 20µm, transmission coefficient r = 0.8985, attenuation factor a = 0.8578,

effective index neff = 2.35. The central resonance wavelength is 1554.252 nm.

We assume the 4-op MORR is programmed with 1- to 4-bit weights w, and we

apply 1- to 4-bit voltage signals x to its controllers. We use Lumerical INTER-

CONNECT to simulate the intensity transmission of this MORR under given

input/weights. The detector sensitivity is set to 1 A/W. Only the insertion

loss of MORR is considered, while the loss in the waveguide is ignored. The

derived neuron model has a high fidelity with <1% relative error compared

with simulation results.

MORR Array. We further simulate a 2×4 MORR array with 4 MRRs to

87

https://github.com/JeremieMelo/pytorch-onn

1-bit 2-bit 3-bit 4-bit

(0,
1

3
,
2

3
,
1

3
)

(
2

3
,
1

3
,
1

3
,
2

3
)

(0,1,0,1) (1,
4

7
,
6

7
,
5

7
)

(
3

7
,
2

7
, 0,
2

7
)

(
12

15
,
4

15
,
2

15
,
9

15
)

(
1

15
,
1

15
,
10

15
,
2

15
) (0,1,1,1)

Theoretical

Simulated

0.9771

0.4968

0.8648

0.1551

x

w

0.9773

0.4983

0.8657

0.1564

-0.02%

-0.3%

-0.1%

-0.8%

Figure 2.28: Compare theoretical and simulated results of a 4-op MORR.

implement balancing factors, together with 4 4-op MORRs on the positive rail

and another 4 MORRs on the negative rail, as shown in Fig. 2.29. In the

end, we add the differential photo-detection. All electrical voltage controls are

of 4-bit precision. We use 1550, 1554, 1558, and 1562 nm as WDM sources.

For the above 4 resonance wavelengths, we design the rings with a radius of

10.08 µm, 10.10 µm, 10.13 µm, and 10.16 µm, respectively. The transmission

coefficient is r = 0.98, and the attenuation coefficient is a = 0.97. This MORR

has much higher Q values and larger FSR than the 20 µm MORR used in

the single MORR neuron simulation, which can enable higher WDM capacity

with less spectrum crosstalk issue. In 4 test cases, the simulation results

slightly deviate from the theoretical values due to wavelength misalignment,

spectrum crosstalk, MORR insertion loss, etc., which validate the functionality

of SqueezeLight.

88

...... ...

...... ...

Positive
Rail

(>0)

Negative
Rail

(<0)

yTIATIA

Learnable Balancing Factors

MORR-based Crossbar Array

𝑑 𝑞

𝑑 𝑞

...

...

Figure 2.29: 2×4 MORR array used in simulation.

Table 2.11: Length-16 4-bit nonlinear vector-product simulated on a 2×4 4-op
MORR array with 4 MRRs.

Test case Simulated ŷ Theoretical y Error |ŷ − y|

1 0.3709 0.3708 0.0001
2 -0.1070 -0.0811 0.0259
3 -0.5916 -0.6170 0.0254
4 0.8505 0.8717 0.0212

2.3.5.2 Compare SqueezeLight with Prior MRR-ONNs

In Table 2.12, we compare the test accuracy among three ONNs: 1)

MRR-ONN-1 with all-pass MRRs [131], 2) MRR-ONN-2 with add-drop MRRs [190],

and 3) our proposed SqueezeLight without pruning (Ours). In all dataset

and ONN settings, SqueezeLight achieves comparable test accuracy with

20-30× fewer ring resonators, 8× lower wavelength usage, and ∼80% fewer

parameters.

2.3.5.3 Quantization

We also evaluate our architecture with low-bit quantization in Fig. 2.30.

Even binarized SqueezeLight can achieve >95% accuracy on MNIST with

89

Table 2.12: Accuracy and hardware cost comparison. small model is
C32K5S2-BN-C32K5S2-BN-F10, where C32K5S2 is 5×5 convolution with 32
kernels and stride 2, BN is BatchNorm, and F10 is a linear layer. large
model is C64K5S2-BN-C64K5S2-BN-F10. We use k = 8 in convolutional lay-
ers and k = 4 in the final classifier. #Device, #λ, and #Param are the
number of used resonators, wavelengths, and parameters, respectively. Nor-
malized ratios are shown in the parenthesis. All models are trained with 8-bit
weight/input/activation quantization.

Dataset Model MRR-ONN-1 [131] MRR-ONN-2 [190] Ours
Test Acc. #Device #λ #Param Test Acc. #Device #λ #Param Test Acc. #Device #λ #Param

MNIST small 97.81 39.90 K (23.86) 1152(8) 38 K 98.55 39.90 K (23.86) 1152(8) 38 K 98.01 1.67 K (1.00) 144(1) 8 K
MNIST large 97.89 130.97 K (31.64) 2304(8) 127 K 98.84 130.97 K (31.64) 2304(8) 127 K 98.36 4.14 K (1.00) 288(1) 22 K
FMNIST small 86.97 39.90 K (23.86) 1152(8) 38 K 89.52 39.90 K (23.86) 1152(8) 38 K 86.65 1.67 K (1.00) 144(1) 8 K
FMNIST large 87.75 130.97 K (31.64) 2304(8) 127 K 90.30 130.97 K (31.64) 2304(8) 127 K 87.21 4.14 K (1.00) 288(1) 22 K
CIFAR-10 large 48.79 143.37 K (28.50) 3136(8) 139 K 61.69 143.37 K (28.50) 3136(8) 139 K 58.29 5.03 K (1.00) 392(1) 26 K

the large model, and >98% accuracy can be maintained with 2∼8 bit precision.

Note that prior work has demonstrated MRR weight banks with higher than

7-bit weight precision [93]. Our SqueezeLight can work well with low-bit

weight precision, which further justifies the practicality of our design.

1 2 3 4 5 6 7 8
Bitwidth

90

92

94

96

98

100

Te
st

A
cc

Figure 2.30: 1- to 8-bit quantization of SqueezeLight on MNIST.

2.3.5.4 Fine-Grained Structured Pruning

In Table 2.13, the pruned SqueezeLight only requires 4-operand

MORRs to implement sparse sub-matrices with k′=4, which reduces the man-

90

Table 2.13: Fine-grained structured pruning evaluation. #8op represents the
number of 8-operand MORRs. Ours-P represents all convolutional layers are
pruned from k=8 to k′=4.

Dataset Model Ours Ours-P
Acc. #8op #4op #Param Acc. #8op #4op #Param

MNIST small 98.01 416 864 8 K 98.02 0 1280 6 K
MNIST large 98.36 1632 1728 22 K 98.58 0 3360 16 K
FMNIST small 86.65 416 864 8 K 86.50 0 1280 6 K
FMNIST large 87.21 1632 1728 22 K 87.36 0 3360 16 K
CIFAR-10 large 58.29 1680 2352 26 K 60.52 0 4032 19 K

ufacturing and control complexity with no accuracy loss. Moreover, the saved

30% parameters lead to less weight storage cost. This enables us to achieve

better scalability by squeezing larger blocks into one MORR with negligible

accuracy loss.

2.3.5.5 Variation Robustness Evaluation

In Fig. 2.31, we evaluate the variation robustness on 1) MRR-ONN-1, 2)

MRR-ONN-2, 3) unpruned SqueezeLight (Ours), 4) pruned SqueezeLight

(Ours-P), and 5) ours with pruning and robustness-aware training (Ours-PR).

In the presence of the additional intra-MORR crosstalk, our ONN shows lower

accuracy than other MRR-ONNs if no pruning or noise-aware training is per-

formed. When we apply fine-grained structured pruning, the crosstalk sources

are cut down from k = 8 to k′ = 4, achieving improved noise tolerance. With

sensitivity-aware training based on Eq. (2.32), SqueezeLight can stably

maintain above 97% accuracy, which is reasonably close to the ideal accuracy,

while other ONNs suffer from a sharply-degrading trend as the noise inten-

sity increases. Therefore, our proposed lightweight robustness-aware training

91

Figure 2.31: Robustness evaluation of the large model on MNIST. The error
bar shows ±1σ over 20 runs, e.g., 0.04 means γ=0.04 and std. ∆ϕ=0.04.
Ours-PR means our pruned model with sensitivity-aware training (α=0.02).

guarantees SqueezeLight to have reliable inference performance even under

practical non-ideal variations.

2.3.5.6 Extended MORR-based Separable CNN

In Table 2.14, we thoroughly evaluate the scalability and effectiveness

of the extended separable CNN architecture on various learning tasks and

models. On large models, the training of the original MORR CNN [66] fails

due to prohibitive GPU memory and runtime cost. Thanks to the superior

software trainability of our MORR-based separable convolution, we can scale

the extended SqueezeLight to million-parameter ONN models, e.g., VGG-

8, on various vision recognition datasets. Meanwhile, our separable MORR-

based architecture saves ∼9× parameters compared with the original Conv-

based ONN model, leading to significant storage cost reduction.

We further compare SuqeezeLight with and without trainable MORR

nonlinearity. Figure. 2.32 visualizes the learned channel-wise MORR nonlin-

92

Table 2.14: Compare the accuracy of separable SqueezeLight with fixed
and learnable MORR nonlinearity on various tasks and models. We further
prune convolutional kernels from k=9 to k′=4 to make them implementable
with 4-operand MORRs. The suffix -L and -P represent using trainable
MORR nonlinearity and structured pruning, respectively. The settings for
CNN-2 are C64-C64-Pool5-F10. The settings for CNN-3 are C64-C64-C64-
Pool5-F10. All convolutional layers (except for the first layer) in the model
are implemented by the proposed MORR-based separable convolution.

Model CNN-2 CNN-3 VGG-8
Dataset MNIST FMNIST SVHN CIFAR-10 CIFAR-100
Ours 98.07 87.66 93.09 83.61 56.92
Ours-L 98.67 89.07 93.75 84.78 58.61
Ours-LP 98.37 90.65 93.82 86.31 60.83

earity curves in two DSConv layers of VGG-8. We observe that the SqueezeLight

explores various monotonic or non-monotonic activation functions with aug-

mented representability than a fixed zero-bias MORR nonlinearity curve. Our

trainable MORR neurons boost the representability to effectively compensate

for the performance loss from parameter compression, leading to an average

of ∼1.1% test accuracy improvement on 5 learning tasks.

Note that the 3×3 depthwise convolution maps 9 weights to 1 MORR,

which exceeds the typical capacity of 4 operands per MORR. We apply struc-

tured pruning to leave 4 non-zero weights in each depthwise convolutional

kernel and demonstrate an average 2.13% accuracy improvement in Table 2.14.

2.3.6 Summary

In this work, we propose a novel ONN architecture SqueezeLight to

break the compactness record of previous designs with higher scalability and ef-

93

-2 -1 0 1 2

φ = ∑i wix2
i

0.0

0.2

0.4

0.6

0.8

1.0

f b
,s

(φ
)

(a)

-2 -1 0 1 2

φ = ∑i wix2
i

0.0

0.2

0.4

0.6

0.8

1.0

f b
,s

(φ
)

(b)

Figure 2.32: Learned MORR nonlinearity for the 1st (a) and 3rd (b) DSConv
layers in VGG-8 on CIFAR-10. Each curve represents the nonlinearity curve
of one input channel.

ficiency. An MORR-based optical neuron with built-in nonlinearity is proposed

to squeeze vector dot-product into a single device. A block-squeezing technique

with fine-grained structured pruning is proposed to further squeeze a matrix

into an MORR to enable a quadratically more compact ONN design. We intro-

duce sensitivity-aware training to enable close-to-ideal neurocomputing with

high noise robustness. We give a theoretical analysis and thorough compari-

son to show the scalability and efficiency advantage of SqueezeLight. We

extend SqueezeLight to an MORR-based separable CNN architecture with

layer-wise squeezing and learnable nonlinearity, showing order-of-magnitude

higher software training scalability and expressiveness improvement. Exper-

iments show that SqueezeLight breaks the area lower bound of previous

MRR-based ONNs with 20-30× better scalability and competitive expressive-

ness.

94

2.4 O2NN: Optical Neural Networks with Differential
Detection-Enabled Optical Operands

Previous coherent and incoherent ONN architectures all encode the

weight matrices to the device configurations or circuit states as a station-

ary linear transform function applied to the dynamic input vectors. However,

those weight-stationary photonic tensor cores are unable to support linear dot-

product between two dynamically-encoded, full-range optical tensors, which

potentially limits the application range of ONNs to accelerate modern ad-

vanced DNNs, e.g., essential operations in attention-based models [203] and ad-

vanced NNs with dynamically-generated weights [25]. Moreover, fully-optical

operands can potentially benefit ONN on-chip training and online learning

applications with frequent and high-speed weight updating [72, 99]. In terms

of robustness, previous MZI-based ONN architectures encounter nontrivial

accuracy degradation under low-bit signal quantization and practical device

variation [252, 74], lacking compatibility with modern neural compression tech-

niques.

In this work, we propose a new ONN architecture O2NN to enable high-

performance and versatile photonic neuromorphic computing. We present a

This O2NN section is based on the following publication.

1. Jiaqi Gu, Zheng Zhao, Chenghao Feng, Zhoufeng Ying, Ray T. Chen, and David
Z. Pan, "O2NN: Optical Neural Networks with Differential Detection-Enabled Op-
tical Operands," IEEE/ACM Proceedings Design, Automation and Test in Europe
(DATE), Feb. 2021.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

95

WDM-based differential dot-product unit with augmented and balanced opti-

cal weights as the core engine. The main contributions and key features are

as follows,

• Flexibility: we propose a novel ONN architecture based on WDM and

differential detection to enable dynamic neural computing between two

dynamically-encoded, full-range optical operands.

• Expressivity: we introduce extended optical weights and augmented

quantization to improve the model expressivity.

• Robustness: we give a comprehensive analysis of the variation-robustness

of our photonic core and provide an effective solution to improve the com-

putational fidelity with knowledge-distillation-based noise-aware train-

ing.

2.4.1 Preliminaries

In this section, we introduce background knowledge about ONNs and

our motivations.

2.4.1.1 DNNs with Stationary or Dynamic Linear Operations

Modern neural networks extensively adopt fully-connected layers and

convolutional layers to achieve linear projection and feature extraction. Those

linear operators can ultimately be implemented by general matrix multipli-

cation (GEMM). For example, a 2-dimensional K × K convolution can be

96

described as y = W ∗ x, W ∈ RCout×Cin×K×K ,x ∈ RCin×H×W , where Cin,

Cout, k, H, W are input channel, output channel, kernel size, input height

and width. To efficiently implement this algorithm, an im2col algorithm is

widely adopted to unroll each convolution patch as a (Cin × K × K)-length

vector. Therefore, the convolution is transformed to a GEMM yCout×(H′W ′) =

W Cout×N · xN×(H′W ′), where H ′,W ′ are spatial height and width of y, and N

represents the unrolled vector length (Cin×K×K). This im2col algorithm lays

the foundation for modern high-performance CNN accelerator designs. Besides

GEMM with static weights, advanced DNN architectures, e.g., attention-based

natural language processing models [203] and dynamic CNNs with real-time-

generated weights [25], require dynamic tensor-product-based operations to

achieve better representability. Such essential and computationally-expensive

modules require high-performance accelerators to support both operands to

be dynamic signals.

2.4.2 Proposed O2NN Architecture

In this section, we introduce the architecture and features of the pro-

posed O2NN, including expressivity, efficiency, and robustness.

2.4.2.1 Dot-Product Engine with Both Optical Operands

Our proposed architecture is designed with a WDM-based differential

structure to support flexible fully-optical vector dot-product computations. It

allows both operands to be dynamically-encoded optical signals, which is inher-

97

-90°-90°

x0

x1

x2

x3

|w0|

|w1|

|w2|

|w3|

90° Rail

0° Rail

U

-90°

90°

90°

Microdisk Resonator

Photodiode

-90° Phase Shifter

Directional Coupler

Waveguide Crossing

Optical Input

VddGnd

TIA

Figure 2.33: Schematic of proposed WDM-based differential dot-product ar-
chitecture with optical-weight extension.

ently different from previous electro-optic neural architectures that are limited

to stationary electrical weights [171, 131, 253, 70, 145]. Figure 2.33 demon-

strates the structure of the engine to achieve dot-product between two optical

vectors. In this architecture, the optical input vectors are denoted as x ∈ RN
+

and w ∈ RN
+ , which are encoded into the light magnitude with a non-negative

range of [0, 1]. Each pair of elements xi and wi is encoded in a unique wave-

length λi. Interestingly, by putting a -π/2 degree phase shifter (PS) on the

lower input port of a 2× 2 optical directional coupler (DC), we can achieve an

orthogonal addition/subtraction pair in the complex domain,(
z0i
z1i

)
=

1√
2

(
1 j
j 1

)
︸ ︷︷ ︸

directional coupler

(
1 0
0 e−jπ/2

)
︸ ︷︷ ︸

phase shifter

(
xi

wi

)
=

1√
2

(
xi + wi

j(xi − wi)

)
,

(2.44)

where z0i , z1i represent the upper and lower output port of the directional

coupler, respectively. Different zi with different wavelengths λi will be re-

directed by the resonated MR onto their corresponding rails, i.e., z0i onto

0◦ rail and z1i onto 90◦ rail. According to the WDM technique, different

98

optical wavelengths can propagate on the same waveguide without mutual

interference, which enables highly parallel signal processing. At the end of the

rail, photodiodes (PDs) are used to accumulate the energy of the WDM optical

signals, proportional to the square of magnitude, and generate photocurrent

I0 and I1, (
I0

I1

)
=

1

2

(
∥x+w∥22
∥j(x−w)∥22

)
=

1

2

(∑N−1
i=0 (xi + wi)

2∑N−1
i=0 (xi − wi)

2

)
. (2.45)

To calculate the optical dot product, we adopt a differential structure to trans-

fer the two rails of photocurrent to an electrical voltage signal U which carries

the dot product result,

U = G(I0 − I1) = 2G
N−1∑
i=0

xiwi ∝
N−1∑
i=0

xiwi, (2.46)

where G is the gain of the on-chip transimpedance amplifiers (TIA). The

superiority of the proposed architecture is that both operands are high-speed

optical signals that allow dynamic encoding. Also, all components in this

computing core are of fixed configuration, which can be fully passive with

near-zero energy consumption, no external control overhead, and no potential

thermal crosstalk, especially when both operands are dynamically generated

from other optical circuits.

2.4.2.2 Expressivity Boost with Optical-Weight Extension

As analyzed in the previous section, both operands are constrained to

be non-negative values as they are encoded into the light magnitude. However,

99

if one operand is weight, then it will cause trainability issues since non-negative

weights inevitably limit the model expressivity due to abnormal activation

distribution and pruned solution space. To solve this weight range limita-

tion problem, we apply a static weight extension technique to augment the

proposed architecture with better model expressivity and minimum hardware

cost. By simply changing half of the passive phase shifters from −90◦ to 90◦

and encoding |w| ∈ [0, 1] into the light magnitude, shown in Fig. 2.33, we

can statically allow half of the weights to be negative. The advantage is that

the sign bit is offloaded to the extra π phase shift in the passive phase shifter

without changing the input optical signal range. With static weight extension,

our engine is able to generate a balanced output distribution with negligible

hardware cost, which is the key feature that guarantees our superior model

expressivity.

2.4.2.3 Performance Boost with Augmented Optical Quantization

For efficient optical neuromorphic computing, low-bitwidth inputs and

weights are highly preferable. [171, 131, 74]. In this section, we introduce

how augmented optical quantization empowers our proposed architecture with

superior compatibility with low-bit quantization shown in Fig. 2.34(a). Given

a b-bit quantized signal within [0, 1], all possible quantized values can be ex-

pressed as { k
2b−1
}2b−1
k=0 using a uniform quantizer,

Q(x, b) =
1

2b − 1
Round

(
x

1/(2b − 1)

)
(2.47)

100

Optical Conv.
Engine

Qi(x,b)Qw(w,b)

xw

wq xq

(a) (b)

Figure 2.34: (a) Distribution of weights with 3-bit augmented quantization.
(b) Augmented optical quantization flow.

With the extra π phase shift on the negative optical path mentioned in Sec-

tion 2.4.2.2, the engine can equivalently express negative weights {− k
2b−1
}2b−1
k=0 ,

thus the number of implementable quantized weights wq is almost doubled

for free with a zero-centered symmetric distribution shown in Fig. 2.34(b).

Even with binarized weights |w| ∈ {0, 1}, augmented optical quantization

will boost our architecture to a ternary ONN w ∈ {−1, 0, 1} with a higher

model expressivity and representability but still maintain high performance

from binarized laser modulation and potential ADC/DAC elimination. More-

over, our proposed engine can naturally implement scaled quantized weights

w ∈ {−E[|w|], 0,E[|w|]} [25, 117, 259], where E[|w|] calculates the layer-wise

average of absolute weights, to achieve better trainability by setting the laser

input intensity corresponding to those scaled values at no hardware cost. A

quantization-aware training procedure [258] is adopted to train our proposed

ONN. We denote the b-bit quantized weights and input as Qw(w, b) and Qi(x, b)

respectively.

101

2.4.2.4 Robustness Analysis and Solution

In this section, we analyze the variation-robustness of the proposed

O2NN and present a solution to maximize its fidelity.

Dynamic Variation Analysis Considering there is stochastic dynamic drift

in the analog optical signals, we have x̂i = (xi + δxi)e
jδϕd

i and ŵi = (wi +

δwi)e
jδϕd

i , where δϕd
i is the dynamic phase drift. For a given input signal

speed B, the signal-to-noise ratio (SNR) is,

SNR =
P̄ (x)

P̄ (δx)
=

E[x2]

σ2
≈ C

B
, δx ∼ N(0, σ2

x), (2.48)

where the SNR is empirically to be inversely proportional to the input signal

rate, e.g., 40 Gb/s signal rate corresponds to an SNR of 10 [178], thus the

constant C is approximately set to 40. We extract the relative phase drift

between two operands to an equivalent dynamic phase perturbation on the

phase shifter, i.e., x̂i = (xi + δxi) and ŵi = (wi + δwi), and ϕi = ±π/2 + δϕd
i ,

where δϕd ∼ N(0, σ2
ϕ) is the dynamic input phase drift.

Static Variation Analysis Considering the phase shifter produces an extra

phase drift δϕs ∼ N(0, σ2
ϕ). Though this drift is deterministic, it is expensive

to evaluate each device drift individually for a large accelerator, hence we

assume the static phase error is also a Gaussian random variable. Hence we

have ϕi = ±π/2+δϕd
i +δϕs

i ∼ N(±π/2, 2σ2
ϕ), then the output of the directional

102

x

Drop Port

Through Port

ax

Input Port

(a)

1550 1553 1555 1557
0.0

0.2

0.4

0.6

0.8

1.0

Resonance
Drift

Transmission
Drop

Wavelength (nm)

(b)

Figure 2.35: (a) Add-drop MR resonator structure with non-ideal transmission
factor. (b) Drop port transmission decay caused by resonation wavelength
shift.

coupler can be derived as,(
ẑi

0

ẑi
1

)
=

1√
2

(
1 j
j 1

)(
1 0
0 ejϕi

)(
x̂i

ŵi

)
=

1√
2

(
x̂i − ŵi sinϕi + jŵi cosϕi

ŵi cosϕi + j(x̂i + ŵi sinϕi)

)
.

(2.49)

Then we further consider the non-ideal transmission factor of the MR resonator

that only transmits α ∈ [0, 1] of the light energy to the rail due to resonance

spectrum drift and insertion loss, shown in Fig. 2.35(a) and 2.35(b). α is esti-

mated by a unilateral normally distributed variable α ∼ max(0, 1−|N(0, σ2
α)|).

Thus, the photocurrent can be given by,(
Î0
Î1

)
=
1

2

(∑N−1
i=0 α0

i

(
x̂2
i − 2x̂iŵi sinϕi + ŵ2

i

)∑N−1
i=0 α1

i

(
x̂2
i + 2x̂iŵi sinϕi + ŵ2

i

)) . (2.50)

Therefore, the differential output of the engine becomes,

Û ∝
N−1∑
i=0

(α0
i − α1

i

4
(x̂2

i + ŵ2
i)−

α0
i + α1

i

2
x̂iŵi sinϕi

)
. (2.51)

Our engine is highly robust to static device noises since the design point ϕ =

±π
2

and α = 1 are the local optima of sin and MR resonance curve with the

minimum sensitivity.

103

Address Static and Dynamic Noises via Variation-Aware Knowledge

Distillation We handle the above static and dynamic variations by train-

ing ONNs with the non-ideality modeling, shown in Eq. (2.51). We apply a

knowledge distillation training strategy to improve the noise tolerance of our

architecture. First, we pre-train an ideal ONN model without noise injection.

as the teacher model ft(·;W). Then we inject both static and dynamic varia-

tions to a noisy student model fs(·;W , σx, σϕ, σα). We train the student model

with a combined objective of hard target and soft target,

L = βT 2DKL(q, p) + (1− β)H(y,softmax(fs)),

p =
exp(fs/T)∑
exp(fs/T)

, q =
exp(ft/T)∑
exp(ft/T)

, (2.52)

where DKL is the KL divergence, T is a temperature to control the smoothness,

H(y,softmax(fs)) is the cross-entropy loss, and β is a weighting factor to

balance the soft and hard targets. Though this method introduces marginal

training time overhead, it can effectively improve the ONN robustness to both

static and dynamic errors. A noise source cooling strategy that gradually

reduces the noise intensity is leveraged in low-bit (e.g., <3 bit) quantized

training for better convergence.

2.4.2.5 Discussion: Hardware Cost and Features

In this section, we analyze and compare the hardware cost and features

of our proposed ONN with previous ONN designs.

104

Table 2.15: Comparison among ONNs. Area cost is normalized to O2NN on a
size-N matrix-vector multiplication based on real device sizes [195, 171, 190,
131], i.e., one MZI ≈240×40 µm2, one DC≈60×40 µm2, one PS≈60×40 µm2,
and one MRR≈20×20 µm2. Note that our area is not a simple accumulation
of device sizes but is estimated with real layout information as a reference.
Power is normalized to ours with the same statistics from the PDK [195], i.e.,
one PS≈20 mW and one MRR≈4 mW . The block size is set to k=4 for FFT-
ONN [70].

MZI-ONN [171] Slim-ONN [253] FFT-ONN [70] MRR-ONN [190] O2NN
Norm. Area Cost ∼1.71× ∼0.86× ∼0.86× ∼0.1× 1×
Norm. Power ∼2× ∼1× ∼1.25× ∼0.2× 1×
GEMM Yes No No Yes Yes
Optical Operands Only One Only One Only One Only One Both
Robustness Medium Medium Medium Low High
Control Complexity Medium-High Medium Medium-Low High Medium
CNN Support Yes No No Yes Yes
Quantization Compatibility Low Low Medium Medium-High High
Output Range Positive Positive Positive Pos&Neg Pos&Neg

Optical Input Encoding Cost The optical inputs are driven by coherent

sources with phase shifters to control their phases. The weight encoding cost

can be amortized by broadcasting to multiple processing units [80]. Moreover,

since the weights are relatively stationary in ONNs, they can be directly mod-

ulated by phase change materials [145] or efficient laser modulation, which has

near-zero area cost and power overhead. Since our architecture supports both

operands to be optical signals, our architecture is the first integrated ONN that

can achieve multiplication beyond static synaptic weights. Dynamic optical

signals can be directly fed into our engine to support fully-optical attention-

like operations [203] and NNs with dynamically-generated weights [25], where

no extra energy is required due to its fully-passive design.

105

+ _

Ep,0

E0,0

...

...

E0,q

Ep,2Ep,1

E0,1 ...

...

...

H’×W’

N
=C

in
×K

×K

Cout

Figure 2.36: Tiling-based engine assignment for parallel GEMM.

Area Cost, Latency, and Energy Consumption Now we give a theoret-

ical analysis of the hardware cost. Figure 2.36 shows how we assign multiple

engines to a GEMM task with the im2col algorithm. Without losing general-

ity, we only consider the most area-consuming directional couplers (DCs) and

phase shifters (PSs) and assume they share the same size and aspect ratio of

wdc/hdc = 2. We partition the GEMM task into P × Q sub-tasks to balance

hardware cost and parallelism. For a matrix multiplication AM×N ·BN×L, the

proposed architecture costs PQN PSs and PQN DCs. This partitioned engine

assignment has an estimated latency of τours = ML(2wdc+Nhdc)
PQc

= ML(N+4)hdc

PQc
,

where c is the speed of light. The previous MZI-based ONN architecture

costs M(M − 1) + N(N − 1) + 2max (M,N) DCs and the same number

of PSs to implement an M × N matrix-vector multiplication with latency

τmzi =
4(M+N)Lwdc

c
= 8(M+N)Lhdc

c
[171]. We compare their latency-area prod-

uct (LAP),

Amzi · τmzi =8(M +N)(M2 +N2)Lhdc/c

Aours · τours =MNL(N + 4)hdc/c.
(2.53)

106

For fully-connected layers, we assume M = N , then we have 32N
N+4

times smaller

LAP than MZI-ONN. For a typical convolutional layer, we assume N = K2M .

Then the LAP improvement is around 8(K2 + 1) times. If the MZI-based

ONN adopts P ×Q MZI sub-arrays, it costs around 8LNhdc

Qc
latency and PQN2

components, which is still 8P times less efficient than our architecture.

Our architecture is also more energy-efficient than prior ONNs. For

the photonics part, the only optical device tuning power is phase control and

modulation. As mentioned before, the power of the weight modulation can

be amortized by weight sharing and even reduced by direct laser modulation.

In attention-like operations and layers with dynamically-generated weights,

since both operands are directly from the previous layer and already in the

optical domain, our architecture potentially consumes near-zero energy. Hence

we have comparable or better energy efficiency than previous coherent ONNs

in different application scenarios. For the electrical part, since our engine

supports binarized inputs, our architecture is compatible with a DAC/ADC-

less design, enabling potentially-ultra-low power as ADCs/DACs take most

power [131, 74].

Differences from Prior Work We compare with previous ONNs in Ta-

ble 2.15. Though larger than MRR-ONN, compared with other coherent

ONNs [171, 253, 70], our architecture has a smaller area cost. No previous

ONN can directly perform linear inner-product between two optical signals.

Our proposed architecture is the first integrated ONN that supports both

107

operands to be optical signals, making it possible to realize direct layer cas-

cading and optical-optical product that is necessary in attention-based neural

architectures and NNs with dynamically-generated weights [25]. Compared

with noise-sensitive MRR-ONN and unscalable, error-prone MZI-ONN [171,

252, 74] , our architecture achieves a relatively-low hardware cost, good model

expressivity, and much better variation-tolerance. Furthermore, our architec-

ture can well-support a wide spectrum of modern DNN architectures across

CNN, MLP, and AdderNet, etc. MZI-ONN has low compatibility with net-

work compression given its complicated principle [70, 74], and MRR-ONN

only scales its weight range without increasing the valid quantization levels.

In contrast, our ONN can seamlessly support extremely-low-bit quantization

with better expressivity.

2.4.3 Experimental Results

We conduct experiments on the MNIST and FashionMNIST (FMNIST)

dataset. We use a CNN setting C16-C16-P5-F32-F10, where C16 is a 3×3

convolutional (Conv) layer with 16 kernels, P5 means average pooling with

output size 5×5, and F32 is a fully-connected (FC) layer with 32 neurons. We

implement ONNs with PyTorch and train all models for 50 epochs with the

Adam optimizer. and a mini-batch size of 32. We use Lumerical INTERCON-

NECT to do optical simulation with real devices from the AIM PDK [195],

which should already model comprehensive and practical non-ideal factors. In

knowledge distillation, we set T=6 and β=0.9. We gradually cool down the

108

No-Ext. FC-Ext. All-Ext.

88.1%

97.6% 98.4% 99.0%

Software CNN

Te
st

 A
cc

u
ra

cy
 (

%
)

100

95

90

85

Figure 2.37: Evaluation of 8-bit optical-weight extension on MNIST. Ext. is
short for extension.

noise intensity by 20% in lower than 3-bit cases.

2.4.3.1 Comparison Experiments

We first validate the effectiveness of optical-weight extension and aug-

mented optical quantization, then evaluate the robustness via optical simula-

tion and comparison experiments.

Optical-Weight Extension We compare four configurations of an 8-bit

quantized optical CNN: 1) no optical-weight extension, 2) only extend FC

layers, 3) apply weight extension to both FC and Conv layers, and 4) ideal

software CNN. Figure. 2.37 shows that weight extension for fully-connected

layers is essential for model expressivity. With balanced convolutions and

fully-connected layers, the ONN model can recover its full modeling capacity

with the highest inference accuracy. Therefore, the proposed ONN architec-

ture can be used to accelerate modern CNN models with negligible accuracy

degradation (∼0.5%) compared with the original software CNNs.

109

96.1

97.0 97.6
98.2 98.4 98.6 98.5 98.4100

95

90

85

Te
st

 A
cc

u
ra

cy
 (

%
)

Quantization Bit

1 2 3 4 5 6 7 8

(a)

90

80

75

70

Te
st

 A
cc

u
ra

cy
 (

%
)

Quantization Bit

1 2 3 4 5 6 7 8

87.186.1
86.9

86.386.7
85.7

83.1

76.7

85

(b)

Figure 2.38: O2NN quantization on (a) MNIST and (b) FMNIST.

Augmented Optical Quantization In analog DNN accelerators, the max-

imum precision is 8-bit or even 4-bit considering control complexity [171, 131,

74] In Fig. 2.38, our augmented optical quantization enlarges the solution

space and achieves high accuracy even under low-bit quantization on both

dataset. Even for binarized optical inputs, we can still maintain >96% accu-

racy on MNIST and 76% on FashionMNIST, which enables the coexistence

of hardware-efficient optical computing and improved inference accuracy. In

contrast, the state-of-the-art quantized MZI-ONN still suffers from > 10%

accuracy drop on MNIST under extremely-low-bit quantization [74].

Variation-Robustness Evaluation We use Lumerical INTERCONNECT

tools with the AMF process design kit (PDK) [2] to validate the fidelity of

our architecture under static device variations. The simulation results in

Fig. 2.39 show that phase shifter drift and MRR non-ideality lead to 10-15%

dot-product error. Then, we further consider dynamic variations in our accu-

racy evaluation with our PyTorch-based ONN simulator on different setups, 1)

110

Simu. Ideal

-0.850
-1.000

1-bit
Simu. Ideal

-0.667

2-bit

-0.592

Simu. Ideal
-0.667

2-bit

-0.592

Simu. Ideal

-0.208 -0.225

3-bit
Simu. Ideal

-0.208 -0.225

3-bit
Simu. Ideal

-0.537
-0.600

4-bit
Simu. Ideal

-0.537
-0.600

4-bit

0
O

u
tp

u
t

R
es

u
lt

-0.5

-1

0

-0.4

-0.8

0

-0.1

-0.2

-0.3

0

-0.4

-0.8

Figure 2.39: Optical simulation results with 1- to 4-bit preci-
sion. 1-bit: x=(1,0,1,1), w=(1,0,-1,-1). 2-bit: x=(2

3
, 2
3
, 1
3
, 2
3
),

w=(1
3
, 0,−2

3
,−1). 3-bit: x=(0, 1

7
, 1
7
, 6
7
), w=(1

7
, 6
7
,−5

7
,−2

7
). 4-bit:

x=(1
15
, 1
5
, 11
15
, 7
15

), w=(8
15
, 2
15
,−11

15
,− 4

15
).

(a) (b)

Figure 2.40: Robustness evaluation on MNIST. Error bars show the ±1σ
variance. (a) σϕ=0.04, σα=0.04, SNR=39.81 (16 dB) (b) σϕ=0.05, σα=0.05,
SNR=31.62 (15 dB).

noise-unaware training (Baseline), 2) noise-unaware training w/o dynamic

variations (Baseline w/o Dyn. Err.), and 3) variation-aware knowl-

edge distillation (KD). Figure 2.40 shows that our O2NN is extremely robust to

large static device error [74, 252], consistent with the analysis in Section 2.4.2.4,

but sensitive to dynamic variations. Our knowledge-distillation-based training

method can help recover the majority of the accuracy with ∼3% degradation

under both static and dynamic noises. We also observe higher robustness to

111

70.0%

95.2% 97.4% 97.6%

Ideal w/o Dyn. Err. Noisy

(a)

70.0%

95.2% 97.4% 97.6%

(b)

Figure 2.41: Robustness of MRR-ONN [190] on MNIST. (a) σα=0.04,
SNR=39.81 (16 dB). (b) σα=0.05, SNR=31.62 (15 dB).

dynamic noise with lower bitwidth, which is beneficial for binary or ternary

ONNs and thus further shows our superior compatibility with low-bit quanti-

zation. As a comparison, we show the robustness of MRR-ONN in Fig. 2.41.

We observe that it has a high sensitivity to both static and dynamic errors

and suffers from a larger accuracy degradation than our O2NN under low-bit

quantization. MZI-ONN typically suffers from even larger accuracy loss due

to severe phase error accumulation effects [171, 74], thus we do not show its

accuracy here for brevity.

2.4.4 Summary

In this work, we propose a new optical neural network architecture

O2NN to enable efficient and noise-robust photonic neuromorphic computing,

which is the first one that supports tensor products with both operands to

be dynamically-encoded light signals. A novel WDM-based differential dot-

product engine is presented with extended optical weights and augmented

112

quantization techniques, demonstrating enhanced model expressivity and per-

formance under low-bit quantization. We give an analysis of static and dy-

namic variations and present a knowledge-distillation-based training method

to enable variation-tolerant optical neurocomputing under practical noises. A

thorough comparison with prior work shows our advantages in hardware cost,

efficiency, and features. Experimental results demonstrate that our O2NN can

support flexible, robust, and efficient optical neural computing, with both

operands being optical signals even when low-bit optical quantization and

practical variations exist.

2.5 Towards Memory-Efficient Photonic Neural Acceler-
ators via Multi-Level in-situ Generation

So far, we have discussed customized photonic computing engine de-

signs with various hardware-algorithm co-optimization approaches to boost

their performance, efficiency, and flexibility. Now, we extend the scope to the

upper architecture/system-level optimization. The system-level performance

of photonic ML accelerators is still bottlenecked by peripheral electrical cir-

cuitry. Memory access and data movement are critical bottlenecks since it fails

to match the computing capability of emerging tensor cores. Especially for

This memory-efficient ONN section is based on the following publication.

1. Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen,
and David Z. Pan, "Towards Memory-Efficient Neural Networks via Multi-Level in
situ Generation," International Conference on Computer Vision (ICCV), Oct. 2021.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

113

emerging accelerators, e.g., ReRAM-based and photonics-based engines, the

enormous latency, power, and bandwidth gap between memory and computing

engines severely prohibits fully utilizing their advanced computing power.

Previous efforts towards memory-efficient accelerator designs focus on

weight quantization [258, 160, 82], pruning with sparsity exploration [119, 82,

83, 214, 243, 37], structured weight matrices [40, 125, 70, 209], slim architec-

tures [101, 27, 13], better hardware scheduling [136, 246], low-rank approxi-

mation [38, 187, 119, 250, 229, 228], etc. However, limited research has been

done to investigate the intrinsic redundancy in CNN kernels thoroughly. It is

in high demand to provide a unique memory optimization strategy that fully

exploits the potential of advanced ultra-fast AI acceleration platforms.

Therefore, this study proposes a unified framework that generalizes

prior low-rank solutions for memory-efficient NN designs via a multi-level

in situ weight generation technique with mixed-precision quantization. We

are the first to jointly explore multi-level redundancy in channel, kernel, and

bitwidth based on a strong intuition of the intrinsic correlations within con-

volutions. A photonic in-situ weight generator is presented to show how our

method can help unleash the full power of emerging neuromorphic computing

systems. The main contributions of this work are as follows,

• We explore the multi-level intrinsic correlation in CNNs and propose

a unified framework that generalizes prior low-rank-based convolution

designs for higher memory efficiency.

114

• We fully leverage the ultra-fast execution speed of emerging accelerators

and propose a hardware-aware multi-level in-situ generation to trade

expensive memory access for much cheaper computations.

• We integrate a precision-preserving mixed-precision strategy to leverage

the bit-level redundancy in multi-level bases for a larger design space

exploration.

• Experiments and a photonic accelerator case study show that our pro-

posed multi-level in-situ generation and mixed-precision techniques can

save ∼97% weight load latency and significantly reduce memory cost by

10-20× with competitive accuracy compared to prior methods, even on

compact networks and complex tasks.

2.5.1 Preliminary

In this section, we give a brief introduction to the background knowl-

edge and our motivation.

2.5.1.1 Memory Bottleneck in NN Accelerator Designs

Previous works have proposed extensive NN accelerator architectures

to enable efficient DNN inference. Recent emerging non-Von Neumann acceler-

ators mainly focus on the innovation of the core matrix multiplication engine.

However, the computation speed and efficiency of the cores are no longer the

bottlenecks of the overall system. To prove this claim, Figure 2.42(d) shows

that multiple cascaded small convolutional layers have fewer floating-point

115

operations (FLOPs) than a single wide convolutional layer but have higher ex-

ecution time due to lower parallelism and more memory transactions. Hence,

the expensive memory transaction and interconnect delay turn out to a pain

point.

Most accelerators still rely on on-chip SRAMs and off-chip DRAMs to

store/access weights, bringing serious challenges regarding the significant data

movement cost. First, the mismatch between memory and computing cores

in terms of latency and bandwidth heavily limits the potential performance

of modern accelerators, especially for ultra-fast optical accelerators. Typical

DRAM and SRAM have an access time of tens of nanoseconds, and the fastest

SRAM runs at only 5 GHz. However, for example, the computation is executed

at the speed of light (picosecond-level delay) in optical NNs with massive

parallelism and potentially over 100 GHz photo-detection rate [171, 9].

Moreover, data movement becomes the power bottleneck. Figure 2.42(a)

shows the power breakdown on a recent photonic neural chip Mars [159, 196].

The SRAM access dominates the total power consumption. The same issue

also exists in state-of-the-art (SOTA) electrical digital accelerators like famous

Eyeriss [23, 24] shown in Figure 2.42(b).

Limited prior works have explicitly optimized memory cost for emerging

accelerators by leveraging their ultra-fast computing speed. Hence, a special-

ized memory-efficient NN design methodology to minimize data movement

cost is exciting and essential to explore.

116

2.5.1.2 Efficiency and Accuracy Trade-off

Extensive work has been done to explore the NN design space for higher

efficiency with less accuracy degradation. Efficient neural architectures are de-

signed with lightweight structures, e.g., depthwise separable convolution [27],

blueprint convolution [79], channel shuffling [101], etc. Besides, network com-

pression techniques are often utilized to explore the sparsity and redundancy

Digital
49.4%

DACs
21.6%

ADCs
12.7%

Others
8.8%

Photonics
7.5%

(a)

Data
Movement

44.5%

Clock
32.9%

I/O
3.7%

PE Control
9.9%

MAC
8.9%

(b)

log (FLOP/Byte)

lo
g

G
F

L
O

P
S Peak Perf.

M
em

. BW

Id
ea

l

(c)

C5 C5G 2C3 4C1

Model Type

0.0

0.5

1.0

1.5

2.0

N
o
rm

.
R

u
n
ti

m
e

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
F

L
O

P
s

(d)

Figure 2.42: Power breakdown of a silicon photonic accelerator Mars [159,
196] (a) and an electrical accelerator Eyeriss [23] (b). The data movement
(red) takes the most power for both. (c) Roofline model of emerging acceler-
ators. Memory-bounded designs (red point) need to be improved to a better
design (green point) (d) Normalized runtime and number of floating-point op-
erations (FLOPs) among different convolution (Conv) types. C5 is 5×5 Conv,
C5G is 5×5 Conv with low-rank decomposition, 2C3 is two cascaded 3×3
Conv, and 4C1 is four cascaded 1×3 Conv.

117

of DNNs and trim the model size by pruning and quantization [83, 82]. Fur-

thermore, low-rank decomposition [119, 250] is a widely adopted technique to

reduce the number of parameters by approximating a weight matrix by two

smaller matrices. Also, structured neural networks [70, 71, 125] have been

proposed to reduce memory cost with block-circulant matrix representation

and Fourier-transform-based algorithm.

The above generic methods are applicable for emerging ultra-fast neuro-

morphic engines but do not fully leverage their powerful computing capability.

It will be interesting and promising to explore the intrinsic correlation in DNN

weights and enable in-situ weight generation by the computing core itself to

minimize data movement from memory.

2.5.2 Proposed Memory-Efficient Architecture Design

Motivated by prior work [119, 250, 27, 79], we focus on widely deployed

convolutional neural networks (CNNs) to thoroughly explore their intrinsic

multi-level redundancy for better efficiency. We consider a 2-dimensional (2-

D) convolutional kernel W ∈ RCo×Ci×k×k with Co kernels, Ci input channels,

and kernel sizes k. Interestingly we observe intrinsic multi-level correlation

within the kernel that we can leverage for memory compression. This memory

compression directly translates to latency/power improvement since convolu-

tions have frequent weight access, whose memory cost is even higher than

feature maps [22].

118

0 4 8 12 16

Layer

0.4
0.5
0.6
0.7
0.8
0.9
1.0

∑
σ

3
0
%
/
∑
σ VGG19

ResNet18

(a) (b)

Figure 2.43: Convolutional kernel correlations in ImageNet-pretrained mod-
els are shown by the proportion of the sum of the top 30% singular values
(
∑

σ30%). (a) Intra-kernel correlations averaged on different kernels. Error
bars show the ±σ variance. We skip 1×1 Conv. (b) Cross-kernel correlations,
where green dots are 1×1 Conv.

2.5.2.1 Multi-Level Weight Generation

Intra-Kernel Correlation We first explore the low-rank property among

different channels of a kernel. The i-th kernel Wi ∈ RCi×k2 can be treated

as a matrix with Ci row vectors with length k2. From its singular values

Σ = SVD(Wi) = diag(σ0, σ1, · · ·), we observe relatively strong correlations

between those column vectors since the first several major components σ30%

concentrates the majority of the total values. Figure 2.43(a) shows the intra-

kernel low-rank property of modern CNNs. Different layers tend to have dif-

ferent intra-kernel correlations, and shallower layers show higher correlations.

This provides us an opportunity to generate the i-th kernel Wi ∈ RCi×k2

using a low-dimensional channel basis W b
i ∈ RBi×k2 with a cardinality of

Bi < min(Ci, k
2) and a corresponding coefficient matrix Ui ∈ RCi×Bi . Fig-

ure 2.44 visualizes the procedure for convolutions with a general matrix multi-

plication (GEMM) interpretation using the im2col algorithm [16]. This intra-

119

kernel generation is formally expressed as.

Wi = UiW
b
i , ∀i ∈ [Co] (2.54)

Therefore, we reduce the parameter of the i-th kernel from |Wi| = Cik
2

to |W b
i | + |Ui| = Bik

2 + CiBi. Note that for 1×1 convolution, we skip this

intra-kernel generation and directly use all Ci channels given the constraint

Bi < min(Ci, 1
2).

Cross-Kernel Correlation Furthermore, we explore the second-level cor-

relation across Co kernels. We view the entire convolutional kernel W ∈

RCo×(Cik
2) as a matrix with Co row vectors with length of Cik

2. Figure 2.43(b)

quantifies the correlation among different kernels. Though it is slightly weaker

than the intra-kernel correlation, it still brings another opportunity to fur-

ther decompose the weight along another dimension. Instead of generating

Co kernels independently, we only generate a subset of kernels as our kernel

basis Wc = {Wi ∈ RCik
2
,∀i ∈ [Bc], Bc < min(Co, Cik

2)} using Eq. (2.54).

This generated kernel basis Wc is used to span the entire kernel together with

another coefficient matrix V ∈ RCo×Bc as follows,

W = V Wc = V {UiW
b
i }i∈[Bc], (2.55)

If Bc ≥ min(Co, Cik
2), we only consider intra-kernel correlation by setting

Bc = Co without performing Equation (2.55). After the proposed two-level

generation, the parameter compression ratio is,

r =
|V |+

∑
i∈[Bc]

(|Ui|+ |W b
i |)

|W |
=

(
Co +Bik

2 + CiBi

)
Bc

CoCik2
. (2.56)

120

...

Intra-kernel
Correlation

Cross-kernel
Correlation

..
.

..
.

=
...

...

...

..
.

..
.

...

𝑘 × 𝑘 𝐵𝑖 𝑘 × 𝑘

𝐶𝑖
=

𝐶𝑖 × 𝑘 × 𝑘 𝐵𝑐 𝐶𝑖 × 𝑘 × 𝑘

𝐶𝑜

𝑘
kernels

channels

𝑼𝒊
𝑽

𝑾𝒊
𝒃

𝑽
𝑼𝒊

𝑘
𝐶𝑜

𝐶𝑖

×
×

Cross-kernel
Generation

Figure 2.44: Intra-kernel and cross-kernel generation.

The extra computation for in situ kernel generation O(2BcCiBik
2+2CoBcCik

2)

is marginal compared with the convolution itself O(2CoCik
2HW), where H

and W are output feature map sizes. Thus the runtime overhead is negligible,

consistent with what we showed before in Figure 2.42(d). In this way, we

successfully save expensive memory transactions with marginal computation

overhead, which fully leverages the emerging accelerators’ ultra-fast computing

capability to mitigate the critical memory bound.

2.5.2.2 Augmented Mixed-Precision Generation

Besides the weight correlation that explores parameter-level reduction,

we further explore the bit-level redundancy with mixed-precision bases. Mod-

ern NN accelerator designs, especially emerging analog engines, prefer to use

low-bit weights to reduce memory access latency and simplify the control cir-

cuitry complexity [258, 160, 171, 74, 254]. In this section, we utilize the pre-

121

cision preserving feature of analog engines and propose an augmented mixed-

precision generation strategy to recover high-precision weights with low-bitwidth

basis and coefficients.

We assume the bitwidths for W b
i , Ui, and V are qb, qu, and qv, re-

spectively. The first-level intra-kernel generation is capable of generating

Wc ∈ RBc×(Cik
2) with at most (2qb − 1)(2qu − 1)Bi +1 possible distinct values,

which corresponds to a bitwidth upper bound sup(qc) = (qb + qu + log2Bi).

Unlike digital cores, this precision can be maintained by the direct cascade of

two analog tensor units without resolution loss caused by the analog-to-digital

conversion. Then, the cross-kernel generator will output W with an equiv-

alent bitwidth sup(q) = (qv + sup(qc) + log2Bo) that can also be preserved

in the matrix multiplication unit. The advantages are clear that our method

enables the weight generator to be completely in the analog domain to recover

a high-precision, i.e., q > qb, qu, qv, weight matrix using low-precision basis and

coefficient matrices. The memory compression ratio rm is thus calculated as,

rm =

∑
i∈[Bc]

(
qb|W b

i |+ qu|Ui|
)
+ qv|V |

qw|W |

=
BcBik

2qb +BcCiBiqu + CoBcqv
CoCik2qw

.

(2.57)

Hence, given a target qw, we can explore fine-grained mixed-precision settings

of qb, qu, and qv to further cut down the memory cost in the bit-level, which

is an orthogonal technique to the above parameter-level counterparts.

122

Algorithm 2 Training with in situ generation

Input: A pretrained teacher M̂ with weights Ŵ , a student model M with
W b

i , Ui, and V , mixed-precision bitwidths qb, qu, and qv, training dataset
Dtrn, total iterations T , initial step size η0;

Output: Converged student model;
1: Step 1: ℓ2 Initialization from the teacher model
2: W b

i ,Ui,V ← argmin ∥Ŵ − V {UiW
b
i }i∈[Bc]∥22

3: Step 2: Quantization-aware knowledge distillation
4: for t← 0 · · ·T − 1 do
5: Randomly sample a mini-batch It from Dtrn

6: U t+1
i ← U t

i − ηt∇Ui
(LKD + λLort), ∀i ∈ [Bc]

7: W b,t+1
i ←W b,t

i − ηt∇W b
i
(LKD + λLort), ∀i ∈ [Bc]

8: V t+1 ← V t − ηt∇Vi
(LKD + λLort)

9: ηt+1 = Update(ηt) ▷ Step size decay
10: end for

2.5.2.3 Training with in-situ Weight Generation

Our main target is to reduce memory cost with acceptable accuracy

loss. Now we introduce how to optimize the designed CNN with in situ gen-

erators such that the desired accuracy can be achieved. We adopt a two-stage

quantization-aware knowledge distillation to train our proposed NN, described

in Alg. 2. Firstly, we obtain a pre-trained full-precision model without in situ

generation as our teacher model M̂ whose weight matrix is denoted as Ŵ . Our

low-rank mixed-precision model is the corresponding student model M whose

weight matrix W is generated by quantized W b
i , Ui, and V . A differentiable

quantizer [258] is used in our quantization-aware training. For simplicity, we

omit the quantization notation for quantized W b
i , Ui, and V if mixed-precision

quantization is used. Then we let the student mimic the teacher using a two-

123

stage training algorithm. First, we solve the following problem to project

the teacher model onto the student parameter space by minimizing their ℓ2

distance,

min ∥M̂(Ŵ)−M(W)∥22 ≈ ∥Ŵ − V {UiW
b
i }i∈[Bc]∥22. (2.58)

Given the smoothness of M and M̂, the above ℓ2 distance can be approximated

by the first-order term of its Taylor expansion. This ℓ2 distance-based subspace

projection is an effective and efficient initialization method for the student

model. Then we try to find local optima in the low-rank space starting from

this projected solution point. Therefore, in the second stage, we train the

student model with knowledge distillation [91] as,

min LKD = βT 2DKL(qT , pT) + (1− β)H(q, pT=1),

s.t. pT =
exp(M(W)

T
)∑

exp(M(W)
T

)
, qT =

exp(M̂(Ŵ)
T

)∑
exp(M̂(Ŵ)

T
)
,

W = V {UiW
b
i }i∈[Bc],

0 < Bi < min(Ci, k
2), Bi ∈ Z

0 < Bc < min(Co, Cik
2), Bi ∈ Z,

(2.59)

where M(W) is the output logits, DKL is the Kullback–Leibler divergence be-

tween two probability distributions, H(·, ·) is the cross entropy, q is the ground

truth distribution, T and β are hyper-parameters controlling the smoothness.

This training method [91] can distill the representability of the high-rank full-

precision model to our low-rank quantized student.

However, we notice that once the basis and coefficient matrices have

a deficient row-rank or column-rank, the spanning subspace of the generated

124

matrix will become too small to approximate the original full-rank matrix.

Therefore, to maximize the rank of the spanned weight matrix, we set a row

orthonormality constraint to the basis W b
i and a column orthogonality con-

straint to the coefficient matrices. This constraint can be relaxed using penalty

methods as a multi-level orthogonal regularization term Lort as follows,

Bc∑
i=1

(
∥W b

i (W
b
i)

T−I∥22+∥ŨT
i Ũ−I∥22

)
+∥Ṽ T Ṽ −I∥22,

Ũi =
(

u0

∥u0∥22
· · · u0

∥uBi−1∥22

)
, Ṽ =

(
v0

∥v0∥22
· · · v0

∥vBc−1∥22

)
.

(2.60)

Equation (2.60) is a generalization to a previous single-level penalty [79, 229]

and exerts a soft constraint to multi-level correlations such that the spanning

space will not collapse to a low-dimensional subspace. Therefore, the overall

loss function is L = LKD + λLort.

2.5.2.4 Case Study: Silicon Photonics Implementation

We showcase a photonic implementation of the proposed in situ weight

generator in Figure 2.45. We focus on a SOTA design based on micro-ring

resonators [190]. Other accelerators can also benefit from our method as long

as the multi-level correlation and precision-preserving properties hold.

After loading the lightweight basis and coefficient matrices from the lo-

cal electrical buffer, two cascaded ultra-fast optical weight banks will achieve

the first-level and second-level generation to obtain the final weights W . With-

out intermediate storage, the analog weights are directly broadcast to all pho-

tonic tensor units via ultra-low-power optical interconnects [9] to perform the

125

...

..
.

...

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

..
.

...

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

..
.

...

...

W
D

M
 M

U
X

...

𝑼𝑖

...

..
.

...

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

..
.

...

...

W
D

M
 M

U
X

...

Intra-kernel
Generator

𝑾𝑖
𝑏 𝑼𝑖

...

...

Photonic MVM
Unit

...

...

𝑾

𝑾

...

Less Memory Access
(Low-bitwidth)

Memory-Unaware ONN Design Proposed Memory-Efficient ONN Design

Weight Broadcasting

High-bitwidth
Weight

High-bitwidth
Weight

Weight Broadcasting

Ultra-fast Photonic Weight Bank

Bit Precision is Preserved in the Ultrafast Fully-Analog Domain

𝑼𝑖

...

..
.

...

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

..
.

...

...

W
D

M
 M

U
X

...

Cross-kernel
Generator

Ultra-fast Photonic Weight Bank

𝑾𝑖 𝑽

...

..
.

...

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

..
.

...

...

W
D

M
 M

U
X

...

Photonic MVM
Unit

𝑾

...

..
.

...

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

..
.

...

...

W
D

M
 M

U
X

...

...

𝑾 𝑾

Local Buffer

Linearization and
Modulation

Li
n

e
ar

iz
at

io
n

 a
n

d

M
o

d
u

la
ti

o
n

Local Buffer

𝑾𝑖
𝑏 𝑼𝑖 𝑽 Linearization and

Modulation

Intensive Memory Access
(High-bitwidth)

Multi-Level in-situ

Weight Generator

Multi-Level in-situ

Weight Generator

Figure 2.45: Photonic implementation of in-situ weight generator and pe-
ripheral structures.

1 2 3 4 5 6 7 8

Bc

1
2
3
4
5
6
7
8

B
i

0.075

0.100
0.125

0.150

84

86

88

90

(a)

Depthwise Separable Conv
(Bc = 1)

(0.129, 92.1%)

Blueprint Conv
(Bi = 1)

(0.129, 93.1%)

r

Acc. (%)

Conv
(Bi = Bc = max)

(1, 94.1%)

(44, 2, 92.46%)

(28, 4, 91.98%)
(17, 3, 90.62%)

(8, 8, 88.02%)

(30, 1, 90.93%)

(42, 8, 92.76%)

(47, 7, 92.54%)

(b)

Figure 2.46: (a) Accuracy (color) and compression ratio (contour) of the cus-
tomized 3-layer CNN on FashionMNIST [222] with various Bi and Bc (92.14%
Acc. for the original Conv). (b) Accuracy (blue contour) and compression ra-
tio r (black contour) for ResNet-18 on CIFAR-10. Red stars are representative
settings of our method. Blue stars show previous designs.

126

primary operation, e.g., convolution. Compared with the memory-agnostic de-

sign, which requires massive and frequent weight loading, our proposed design

can effectively cut down memory footprint and access latency. Consider a 16-

bit (qw=16) kernel W ∈ R128×128×3×3 and a setting (Bi, Bc, qb, qu, qv)=(2,40,4,4,4)

implemented by micro-rings of diameter R=20 µm, the extra latency intro-

duced by in situ generator is as follows,

τgen = (τDAC + τmod + τprop1 + τoe) + (τmod + τprop2 + τoe)

≈ τDAC + 2× (τmod + τoe) +
4BiR

c
+

4BcR

c

≈ 400 ps + 2× (50 ps + 10 ps) + 25.2 ps = 545.2 ps

≪ 2(1− rm)|W |
BWSRAM

≈ (1− 0.0272)× 288 KB
34 GB/s

= 7.9 µs,

(2.61)

where τDAC is the latency for 10 Gb/s digital-to-analog converter, τmod is the

device modulation delay, τprop is the photonic weight bank propagation delay,

τoe is the optical-to-electrical conversion delay for layer cascade, c is the light

speed, and BWSRAM is the SRAM bandwidth [106]. The generator saves 7.9

µs latency (>97% of total weight load latency) with merely 545.2 ps weight

generation latency overhead. Given ∼50% of total latency is consumed by

kernel loading [22], our weight generation leads to at least 2× overall speedup.

More speedup can be expected if activation quantization is further applied. In

terms of power, our method can achieve significant energy reduction since we

save (1− rm) ≈ 97% weight loading and replace all high-resolution DACs with

(1 − r) ≈ 89% fewer low-bit DACs [166] (power is exponential to bitwidth),

which account for most power as shown in Figure 2.42(a).

127

We further perform quantitative evaluation on a neuromorphic simu-

lator MNSIM-2.0. On ResNet-18/ImageNet, compared with 8-bit BSConv,

our method reduces the overall latency from 56.46 ms to 41.11 ms (27.2%↓),

reduces the overall energy from 25.77 mJ to 3.69 mJ (85.7%↓), and improves

energy-delay-product by 9.6×.

2.5.3 Experimental Results

In this section, we first conduct ablation experiments on the proposed

techniques and compare our method with prior efficient designs in memory

cost and accuracy.

2.5.3.1 Dataset

Our ablation and comparison experiments are based on FashionM-

NIST [222], CIFAR-10 [112], and CIFAR-100. We also test on more tasks

including SVHN [150], TinyImagetNet-200 [35], StanfordDogs-120 [107] and

StandfordCars-196 [110] for fine-grained classification.

2.5.3.2 Neural Network Architectures

We first use a customized 3-layer CNN as a toy example to do multi-

level correlation exploration on FashionMNIST, whose settings are (C32K5S2-

C32K5S1-C32K5S1-AvgPool3-FC10), where C32K5S2 is a 5×5 convolution

with 32 kernels and stride 2, AvgPool3 is an average pooling layer with output

size 3×3, and FC10 means the output linear layer. BatchNorm and ReLU ac-

128

tivation are used between convolutional layers. Then, the rest ablation exper-

iments and comparison experiments are based on ResNet-18 1 [86], DenseNet-

121 2 [95], and MobileNetV2 [168], which are adapted to CIFAR-10/100.

2.5.3.3 Training Settings

We train all models for 200 epochs using RAdam [129] optimizer with

an initial learning rate of 0.002, an exponential decay rate of 0.98 per epoch,

and a weight decay of 5e-4. On CIFAR-10/100, images are augmented by

random horizontal flips and random crops with 4 paddings. On TinyIm-

ageNet, StanfordDogs-120, and StanfordCars-196, additional color jitter is

added. Mini-batch sizes are 64, 128, 64, and 64 for our 3-layer CNN, ResNet-

18, DenseNet-121, and MobileNetV2, respectively.

2.5.3.4 Ablation: Multi-Level Correlation Exploration

To explore the impact of the multi-level basis cardinality Bi and Bc on

the parameter count and accuracy, we first perform a grid search on Fashion-

MNIST with our customized 3-layer CNN, shown in Figure 2.46(a). In terms

of parameter compression ratio r, Bc shows a stronger impact than Bi since

r ∝ Bc while Bi only partially contributes to r. For test accuracy, generally

larger Bi and Bc lead to higher accuracy. However, the accuracy is much

more sensitive to Bc than Bi, where we find a great opportunity to minimize

1https://github.com/kuangliu/pytorch-cifar
2https://github.com/gpleiss/efficient_densenet_pytorch

129

https://github.com/kuangliu/pytorch-cifar
https://github.com/gpleiss/efficient_densenet_pytorch

10−4 10−3 10−2 10−1

Orthogonal Loss λ

86

88

90

92

T
es

t
A

cc
u
ra

cy
(%

)
Bi = 2, Bc = 44

Bi = 3, Bc = 17

Bi = 4, Bc = 28

Bi = 8, Bc = 8

Figure 2.47: Exploration of different orthogonal regularization weights with
ResNet-18 on CIFAR-10 [112].

memory cost with a small accuracy drop. Therefore, we conclude a heuristic

design guidance that a small Bi and medium Bc leads to sweet points. We

further validate it on CIFAR-10 with ResNet-18, whose contours are shown

in Figure 2.46(b). In the design space exploration, we also plot full-rank

Conv, depthwise separable Conv [86], and blueprint Conv [79] as our special

cases. The blueprint Conv can be generalized by our method once Bi=1 and

Bc=max. To some extent, separable Conv can also be generalized by setting

Bi=max and Bc=1 while using different V for different input channels. Note

that sharing V across channels is the key-point for our efficiency superiority.

With the concluded design guidance, we indeed can quickly find design points

that outperform the above prior works in memory efficiency with comparable

accuracy, e.g., (Bi=2, Bc=44). Note that we assume a global (Bi, Bc) setting

for all layers, while layer-specific cardinalities can be an interesting future topic

to push toward the Pareto front.

130

Table 2.16: Accuracy evaluation on orthogonal regularization (Ortho), initial-
ization (ℓ2 and SVD), and knowledge distillation (KD). ResNet-18 is evaluated
on CIFAR-10.

Param Ratio r=0.025 Param Ratio r=0.05
Bi Bc Bi Bc Bi Bc Bi Bc

3 17 8 8 2 44 4 28
Baseline 90.62% 88.02% 92.46% 91.98%
Ortho Reg 90.82% 88.52% 92.88% 92.32%
SVD Init 91.32% 88.10% 93.05% 92.80%
ℓ2 Init 91.32% 88.85% 93.18% 92.75%
ℓ2+Ortho 91.40% 88.65% 93.17% 92.93%
ℓ2+Ortho+KD 91.52% 88.96% 93.29% 93.19%

2.5.3.5 Ablation: Multi-Level Orthogonality Regularization

Several representative (Bc,Bi) pairs are evaluated on ResNet-18 CIFAR-

10 with various regularization weights λ. Figure 2.47 reveals that the model

performance can be consistently improved by 0.5%-1% with proper λ values

(0.01 ∼ 0.05). This shows that the proposed multi-level orthogonal penalty

term can encourage the spanned kernel to be as high-rank as possible with

augmented representability.

2.5.3.6 Ablation: Initialization and Distillation

We further evaluate different combinations of the proposed ℓ2 initial-

ization and knowledge distillation with representative (Bi, Bc) pairs in Ta-

ble. 2.16. In our ℓ2 initialization, we optimize Equation (2.58) using RAdam [129]

for 3k iterations with lr=2e-2. We first compare with a traditional truncated

singular value decomposition (SVD) based method [38, 229]. Both methods

benefit accuracy while our ℓ2 initialization demonstrates better results. With

131

orthogonality penalty and knowledge distillation (β=0.9, T=3), our method

achieves the highest accuracy. In conclusion, a good initialization and knowl-

edge from the teacher are critical to the accuracy of the student model.

2.5.3.7 Ablation: Mixed-Precision Bases Exploration

We perform a fine-grained investigation on the mixed-precision bitwidth

(qb, qu, qv) to justify the trade-off between accuracy and memory efficiency. For

simplicity, we assume the same bitwidth combination for all layers. Figure 2.48

plots the accuracy-memory curve with equal qb, qu, and qv. Above 3-bit, we

can maintain over 93% accuracy (∼1% drop). Equal bit-precision for basis and

Figure 2.48: Accuracy and memory compression ratio contour of ResNet-18
on CIFAR-10 with mixed-precision quantization (qb, qu, qv). Black dots show
qb=qu=qv.

132

Table 2.17: Comparison among efficient convolutions in terms of parame-
ter/memory compression ratio (smaller is better) and accuracy. The cardi-
nality d in PENNI is 2. CirCNN uses a block size k=4. (Ours-Bi-Bc-qb-qu-qv)
is the network setup.

CIFAR-10 CIFAR-100
Param Ratio Mem Ratio Acc Param Ratio Mem Ratio Acc

ResNet-18 (Conv) [86] 1.0000 1.0000 94.10% 1.0000 1.0000 73.53%
ResNet-18 (DSConv) [27] 0.1287 0.1287 92.10% 0.1323 0.1323 68.65%
ResNet-18 (PENNI d=2) [119] 0.2352 0.2352 92.77% 0.2383 0.2383 70.14%
ResNet-18 (BSConv) [79] 0.1291 0.1291 93.10% 0.1327 0.1327 71.11%
ResNet-18 (CirCNN k=4) [40] 0.2510 0.2510 92.16% 0.2541 0.2541 67.93%
ResNet-18 (Ours-2-44-32-32-32) 0.0497 0.0497 93.29% 0.0536 0.0536 70.85%
ResNet-18 (Ours-2-44-8-8-8) 0.0497 0.0131 93.79% 0.0536 0.0140 71.05%
ResNet-18 (Ours-2-44-3-6-3) 0.0497 0.0080 93.72% 0.0536 0.0090 71.47%
DenseNet-121 (Conv) [95] 1.0000 1.0000 94.69% 1.0000 1.0000 76.51%
DenseNet-121 (DSConv) [27] 0.7362 0.7362 93.81% 0.7396 0.7396 74.35%
DenseNet-121 (PENNI d=2) [119] 0.7608 0.7608 94.32% 0.7640 0.7640 75.26%
DenseNet-121 (BSConv) [79] 0.7291 0.7291 94.24% 0.7326 0.7326 75.79%
DenseNet-121 (CirCNN k=4) [40] 0.2601 0.2601 92.86% 0.2698 0.2698 72.45%
DenseNet-121 (Ours-1-25-32-32-32) 0.1986 0.1986 94.89% 0.2091 0.2091 75.09%
DenseNet-121 (Ours-1-25-8-8-8) 0.1986 0.0587 94.78% 0.2091 0.0612 75.59%
DenseNet-121 (Ours-1-25-4-6-6) 0.1986 0.0395 94.68% 0.2091 0.0422 75.05%

coefficients may not be the best combination. Thanks to our mixed-precision

bit-level generation mechanism, we allow larger freedom to further explore

different qb, qu, and qv settings around a region of interest where the accuracy

starts to drop. One key observation is that mixed-precision settings indeed

can lead to higher accuracy with lower memory cost than equal settings. We

also observe that relatively-balanced settings, e.g., (2,5,3), (4,5,6), generally

outperform extremely-imbalanced ones, e.g., (5,1,8), (2,4,8). Hence, we claim

that relatively-balanced mixed-precision bases are preferred to achieve better

memory efficiency and less accuracy loss.

133

2.5.3.8 Comparison with Prior Work

Our method can serve as a memory-efficient drop-in substitution for

normal convolutions. To show the superiority of our method over prior arts, we

compare the memory compression ratio and inference accuracy with the base-

line convolution (Conv) and four representative prior works, depthwise separa-

ble Conv (DSConv) [86], single-level low-rank decomposition (PENNI) [119],

blueprint Conv (BSConv) [79], and block-circulant Conv (CirCNN) [40] on

ResNet-18 and DenseNet-121 in Table. 2.17. For fair comparisons, all meth-

ods only apply to convolutional layers and use the same training settings as

mentioned. To clarify, the selection of (Bi,Bc,qb,qu,qv) is not from exhaustive

enumeration but simply based on the target compression ratio and the heuristic

design guidance we concluded. We only evaluate the unpruned PENNI version

since pruning is an orthogonal technique to our method. We use a low-rank

factor d=2 for PENNI [119] and a circulant block size k=4 for CirCNN [40]

for a comparable memory cost and accuracy.

Compared with the baseline convolution, our 32-bit version achieves

5×-20× memory reduction. Compared with our special cases DSConv and

BSConv, our method with a small Bi and a medium Bc shows 2×-4× memory

reduction and comparable accuracy. Our multi-level generation outperforms

the single-level low-rank decomposition method PENNI with 3.8×-4.7× lower

memory cost and better accuracy. We outperform CirCNN in both metrics.

With mixed-precision generation, we boost the memory efficiency by 25×-

125× and 16×-19× over the baseline Conv and the best prior work BSConv

134

respectively, with competitive accuracy. Though on DensetNet-121 CIFAR-

100, we have ∼0.7% accuracy drop, we have much lower memory cost. A larger

Bc and higher bitwidths can be selected to recover the accuracy as a trade-off.

2.5.3.9 Boost Compact Models on Harder Tasks

To fully justify our superiority, we need to answer another three impor-

tant questions: 1) how does it perform on architectures that are already com-

pact; 2) is it compatible with activation quantization that is more memory bot-

tlenecked; and 3) does the compressed low-rank kernel still have enough rep-

resentability to capture critical features in high-resolution images. Similar to

Figure 2.43, we also observe strong intra-kernel correlation for depth-wise Conv

(DWConv) and cross-kernel correlation for point-wise Conv (PWConv). Hence

we further apply our in-situ generation scheme to each individual DWConv

and PWConv in the inverted residual block of MobileNet-V2 for further weight

compression. Besides, we perform quantization to activation for each layer to

save the most critical activation memory cost. Table 2.18 shows that we can

further save >10× weight storage and reduce the largest activation memory

cost by 4× even on compact architectures. On fine-grained image recogni-

tion tasks where the input images have high resolutions and low categorical

variances, the compressed models still demonstrate strong model representabil-

ity that can capture subtle but critical traits with negligible accuracy drop.

Table 2.19 evaluates our methods further on searched compact networks on de-

tection tasks, which are known to be energy/memory-demanding, our method

135

Table 2.18: In-situ generation with activation/weight quantization on Mo-
bileNetV2 [168]. The setup follows (Ours-Bi-Bc-qb-qu-qv). A8 means 8-bit
activation. † means teacher models are initialized with ImageNet-pretrained
models. The setup for TinyImageNet is (6-60-5-5-5).

CIFAR-10 CIFAR-100
Mem Ratio Acc Mem Ratio Acc

Original [168] 1.0000 93.06% 1.0000 73.90%
Ours-5-40-4-4-4 0.0783 94.03% 0.0867 73.11%
Ours-5-40-4-4-4 (A8) 0.0783 94.02% 0.0867 72.90%

SVHN TinyImageNet-200†

Original [168] 1.0000 96.37% 1.0000 67.13%
Ours-5-40-4-4-4 0.0783 96.61% 0.1251 65.59%
Ours-5-40-4-4-4 (A8) 0.0783 96.63% 0.1251 65.44%

StanfordDogs-120† StanfordCars-196†

Original [168] 1.0000 72.25% 1.0000 89.32%
Ours-5-40-4-4-4 0.0885 71.06% 0.0948 89.54%
Ours-5-40-4-4-4 (A8) 0.0885 71.42% 0.0948 89.47%

can lead to 5-12× compression with marginal performance loss.

Table 2.19: Evaluate compact models beyond simple tasks and classification.

StanfordDogs-120 ImageNet-50 PASCAL VOC
Mem Ratio Acc Mem Ratio Acc Mem Ratio mAP

MobilenetV2 (SSD-lite) 1.0000 72.25% 1.0000 87.56% 1.0000 0.683
Ours (SSD-lite) 0.0885 71.06% 0.0821 87.52% 0.1392 0.655
MobilenetV3-S (SSD-lite) 1.0000 65.41% 1.0000 85.04% 1.0000 0.544
Ours (SSD-lite) 0.2082 66.64% 0.2060 85.44% 0.2238 0.513
EfficientNet-B0 1.0000 75.43% 1.0000 89.56% - -
Ours 0.1257 75.00% 0.1132 88.52% - -

2.5.4 Summary

In this work, we focus on architecture-level optimization and propose a

general and unified framework for memory-efficient photonic accelerator archi-

tecture designs via multi-level in-situ weight generation. We jointly leverage

the intrinsic correlation and bit-level redundancy within convolutional ker-

136

nels and allow the ultra-fast accelerator to generate the weights in situ in

the analog domain by itself to boost the performance. A photonic case study

is given to show our latency/power advantages. Experiments show that our

method achieves 10×-20× memory efficiency boost compared with prior meth-

ods. Our system-level solution provides a unified view of prior single-level

low-rank methods and enables a new design paradigm to break through the

ultimate memory bottleneck for emerging DNN accelerators by their tremen-

dous computing power.

137

Chapter 3

In-situ Training for Self-Learnable Photonic
Neural Engines

3.1 Introduction

Besides the hardware scalability and efficiency, the adaptability or

trainability of photonic analog computing platforms is another major chal-

lenge in their practical application [252, 74, 261]. Especially for edge deploy-

ment scenarios, it is required that photonic AI engines be self-learnable and

adaptable to non-ideal and changing environments or workloads. As a recent

trend in most analog AI platforms, on-chip training becomes a promising so-

lution to simultaneously solve the task performance degradation concern and

adaptability issues.

The first reason to pursue on-chip training is its benefits on task per-

formance and noise robustness. The mainstream approach is to offload the

training process to electronic digital computers, obtain pre-trained weight ma-

trices using classical back-propagation (BP) algorithm, and then map the

trained model onto photonic hardware through matrix decomposition and

unitary parametrization [171, 253]. Nevertheless, due to the analog com-

puting nature of ONNs, the photonic DNN model inevitably suffers from

138

100

103

106

109

G
F

L
O

P
S
/
W

Core-i7
CPU

DaDiannao
ASIC

V100
GPU

Fully
Optical

(a)

Orig +Q +CT +DV +PB

Variations

30

50

70

90

A
cc

u
ra

cy
(%

)

VGG-8
CIFAR-10

ResNet-18
CIFAR-100

(b)

101 102 103

Matrix Size N

10−3

10−1

R
u

n
ti

m
e

(s
) Noise-free

Noise-sim

(c)

Figure 3.1: Comprehensive motivations. (a) Computational efficiency supe-
riority of ONNs [171]. (b) Noise sensitivity of ONNs (Q: 8-bit quantization,
CT: crosstalk, DV: device variation, PB: phase bias). (c) Runtime of noise-free
matrix multiplication vs. w/ noise simulation (Q+CT+DV).

performance degradation or even complete malfunction [252, 261] with the

existence of manufacturing errors, non-ideal device controls, and undesired

circuit noises, shown in Figure 3.1(b). Thus the ONN model trained by

pure software methods could suffer severe performance degradation and poor

variation-robustness. Noise-aware training is one possible method to model

the non-ideal effects during software training to mitigate the noise-induced

performance drop. Though non-ideal effects can be simulated and consid-

ered during software training [252, 74], the variation simulation is physically

inaccurate (especially with unknown process variations) and prohibitively ex-

pensive, shown in Figure 3.1(c), which might not pay off due to the inevitable

simulation-reality gap. Training ONNs on the photonic chip in situ and de-

ploying on the same hardware can make the model fully aware of the physical

non-ideality, thus leading to the same task performance as the training results

show. Also, it can benefit from the high speed and efficiency of the ultra-fast

photonic computing engine.

139

The second reason to adopt on-chip training is its benefits on hardware

adaptability. Once the working environments/condition drifts for the pho-

tonic computing systems, it require fast online adaptation to regain accuracy.

Even with stable environments, once the workload needs to be switched or

data distribution drifts, we still need on-device model fine-tuning or training

from scratch. Once the on-chip training is realized, we can enable important

edge learning applications, e.g., local online learning, transfer learning, life-

long learning, on-device adaptation, etc. This on-device self-learnability will

maximize the adaptability of the computing engine to changing working envi-

ronments and workloads and minimize communication costs and data privacy

issues when communicating with remote cloud machines.

However, it is challenging to realize photonic on-chip training. As a

unique hardware-restricted optimization problem, ONN in-situ learning en-

counters fundamental challenges causing scalability issues in prior methods:

• Lack of full-observability for in-situ light field. Tracking the physical

optical field on every waveguide in U and V ∗ is not scalable or practical

when ONNs scale up. Per device light field monitoring and calibration [64,

99] involves intractable hardware complexity. In practice, only Σ can be

precisely monitored. Therefore, we assume no intermediate circuit states

can be observed.

• Limited input/output observability. In photonic tensor cores, for

efficiency consideration, only the final output signals after UΣV ∗ can be

140

coherently detected. Intermediate signals of a single unitary projection can

not be easily read out without extra hardware support.

• Inaccessible gradients for most control variables. Due to the above

two limitations, it is challenging to use backpropagation or adjoint variable

method to obtain first-order derivatives w.r.t. the MZI rotation phases in

U and V ∗ [171, 72, 65], casting fundamental in-situ optimization difficulty

as ONN scales up.

• Randomness in noisy circuit evaluation. The photonic analog circuits

are noisy, which means the optimization methods must be robust and stable

enough to handle the randomness to avoid divergence.

• High training efficiency requirement. The training algorithm must be

simple and efficient enough to be able to execute on the photonic chip. Com-

plicated gradient calculation and parameter update rules are not practical

for implementation.

Customized learning algorithms are required to enable scalable ONN on-chip

training.

In the rest of this chapter, Section 3.2 introduces a forward-only zeroth-

order optimizer to enable on-chip training of 1,000 parameters with a built-in

crosstalk handling mechanism. Section 3.3 presents a mixed-training strat-

egy with a power-aware sparse coordinator descent optimizer to further boost

the training scalability by 10× with over 90% training energy cost reduction.

141

Section 3.4 introduces a subspace optimization algorithm and a multi-level

sparse training method to enable in-situ first-order partial gradient calcula-

tion and thus enable on-chip training of million-parameter ONNs with 1,000×

scalability breakthrough and 30× training cost reduction.

3.2 FLOPS: Efficient On-Chip Learning for ONNs Through
Stochastic Zeroth-Order Optimization

Previously, ONN on-chip training relied on a brute-force phase tuning

algorithm that tunes each device one by one [171, 256]. Each MZI phase is

individually perturbed by a small value and then updated based on the func-

tion evaluation results. This greedy parameter search algorithm is intractable

when tuning a large number of phases and may not be robust enough to handle

non-ideal variations. To mitigate the inefficiency issue of the above brute-force

algorithm, an in situ adjoint variable method (AVM) [99] is applied to per-

form ONN on-chip training. This inverse design method directly computes

the gradient w.r.t. MZI phases by propagating through the chip back and

forth several times. However, it strictly assumes the photonic system is fully-

observable and requires light field intensity measurement on each device, which

This FLOPS section is based on the following publication.

1. Jiaqi Gu, Zheng Zhao, Chenghao Feng, Wuxi Li, Ray T. Chen, and David Z. Pan,
"FLOPS: Efficient On-Chip Learning for Optical Neural Networks Through Stochas-
tic Zeroth-Order Optimization," ACM/IEEE Design Automation Conference (DAC),
Jul. 2020.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

142

is technically challenging to scale to larger systems. Evolutionary algorithms,

e.g., genetic algorithm (GA) and particle swarm optimization (PSO), are ap-

plied to train ONNs by emulating the biological evolution process [241] with

a large population.

The above on-chip training protocols are only demonstrated to handle

small photonic systems with <100 MZIs, while in this work, we propose a

novel framework FLOPS that extends the learning scale to ∼1000 MZIs with

higher training efficiency, higher inference accuracy, and better robustness to

non-ideal thermal variations. Compared with the previous state-of-the-art

methods [171, 256, 241], our on-chip learning framework FLOPS has the fol-

lowing advantages.

• Efficiency: our learning method leverages stochastic zeroth-order opti-

mization with a parallel minibatch-based gradient estimator and achieves

3∼4× fewer ONN forward than previous methods.

• Accuracy: our proposed optimization algorithm is extended with a

lightweight second-stage learning procedure SparseTune to perform

sparse phase tuning, achieving further accuracy boost while the efficiency

superiority still maintains.

• Robustness: our method is demonstrated to improve the test accu-

racy of ONNs under thermal cross-talk and produces better variation-

robustness than previous methods.

143

Figure 3.2: Schematic of an MZI triangular array and a closeup view of the
MZI structure.

3.2.1 Preliminaries

In this section, we will introduce the architecture of integrated ONNs,

current ONN training methods, and background knowledge about stochastic

zeroth-order optimization with gradient estimation.

3.2.1.1 ONN Architecture and Training Methods

The integrated optical neural network (ONN) is a hardware platform

that implements artificial neural networks with silicon photonics. As a case

study, we focus on an ONN architecture based on singular value decompo-

sition (SVD) [171]. It decomposes an m × n weight matrix using SVD, i.e.,

W = UΣV ∗. The diagonal matrix Σ can be simply implemented by on-

chip attenuators, e.g., single-port Mach-Zehnder interferometers (MZIs), to

perform signal scaling. The unitary matrices U and V ∗ can be realized by

a cascaded MZI triangular array [161], shown in Fig. 3.2. The unitary group

144

parametrization is given by,

U(n) = D

2∏
i=n

i−1∏
j=1

Rij(ϕij), (3.1)

where D is a diagonal matrix with ±1 on its diagonal entries, and the 2-

dimensional planar rotator Rij(ϕij) is an n-dimensional identity matrix where

entries on (i,i), (i,j), (j,i), (j,i) are cosϕij, sinϕij, -sinϕij, cosϕij, respectively.

Each rotator Rij can be implemented by a 2×2 MZI that produces unitary

interference of input light signals with a rotation angle ϕ as follows [171],(
y1
y2

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x1

x2

)
. (3.2)

To train ONNs, the traditional procedure trains the weight matrix

W using gradient back-propagation and then maps it to photonic circuits

through SVD and unitary group parametrization [161], which is inefficient

and hardware-agnostic. Later, several ONN on-chip learning protocols are

proposed to perform in-situ circuit optimization. To solve the problem, a

straightforward approach is to compute the gradient w.r.t each MZI configu-

ration given by,

∂L

∂Rij

=
(
DRn1Rn2Rn3

)T∇yL xT
(
· · ·R32R21ΣV ∗)T

∂L

∂ϕij

= Tr

((∂L

∂Rij

⊙ ∂Rij

∂ϕij

)
(ei + ej)(ei + ej)

T

)
,

(3.3)

where ei is the i-th orthonormal basis. On edge computing platforms, this an-

alytical Jacobian is computationally-prohibitive, especially since ∇yL xT is in-

tractable in practical deployment. Later, a brute-force phase tuning method is

145

proposed [171, 257] using finite-difference-based gradient estimation. Adjoint

variable method (AVM) [99] is proposed to model the circuit state as a partial-

differential-equation-controlled linear system, and directly measures the exact

gradient via in situ light intensity measurement. Evolutionary algorithms,

e.g., particle swarm optimization and genetic algorithm, are demonstrated to

train MZIs on chip [242]. However, a high-dimensional parameter space could

lead to optimization inefficiency and unsatisfying optimality as they typically

require a large population and inevitably faces pre-mature issues.

3.2.1.2 Optimization with Zeroth-Order Gradient Estimation

Zeroth-order optimization (ZOO) has received much attention recently [59,

130] as it enables effective optimization when the explicit gradient of the ob-

jective function is infeasible, e.g., reinforcement learning and black-box adver-

sarial attack on DNNs. ZOO gains much momentum as it is capable of han-

dling higher-dimensional problems than traditional methods, e.g., Bayesian

optimization, and can be integrated with extensive state-of-the-art first-order

optimization algorithms with the true gradient being replaced by the approxi-

mated zeroth-order gradient [59, 130]. ZOO uses a Gaussian function approx-

imation to estimate the local value of the original function f(θ) as follows,

fσ(θ) = E∆θ

[
f(θ +∆θ)

]
=

1

σ
√

(2π)d

∫
f(θ +∆θ)e

−||∆θ||22
2σ2 d∆θ, (3.4)

where ∆θ is a perturbation sampled from Gaussian distribution N(0, σ2). Nes-

terov et al. [148] proves a bound of the difference between the true gradient

146

and its Gaussian approximation if the original function f(θ) is β-smooth,

||∇fσ(θ)−∇f(θ)|| ≤
σ

2
β(d+ 3)3/2, ∀θ ∈ Rd. (3.5)

Based on this, we can approximate the true gradient ∇f(θ) by estimating this

surrogate gradient ∇fσ(θ) with the above error bound. To estimate ∇fσ(θ),

a symmetric difference quotient method is typically used,

∇̂f(θ) = 1

2σ2
(f(θ +∆θ)− f(θ −∆θ))∆θ. (3.6)

Such a sampling-based first-order oracle is an unbiased estimator of fσ(θ).

Passing this zeroth-order gradient estimation to a first-order optimization al-

gorithm, e.g., gradient descent, we can perform optimization only with function

queries.

3.2.2 On-Chip ONN Training based on Zeroth-order Gradient Es-
timation

3.2.2.1 Phase Domain Characterization

To better characterize the optimization problem of ONN on-chip train-

ing, we illustrate details of our optimization domain. Back-propagation based

methods optimize in the weight matrix domain, while on-chip learning methods

optimize in the latent phase domain. Bridged by SVD and unitary parametriza-

tion, the above two domains can switch to each other equivalently. However,

co-optimization between those two domains is theoretically difficult. First, two

domains are fully coupled and the transformation is highly-nonlinear and not

element-wise. Any change in a phase represents a high-dimensional rotation

147

Figure 3.3: Framework of ONN on-chip training with stochastic zeroth-order
optimization. Parallel signals with k different wavelengths are shown.

of the weight matrix, thus leading to perturbation of all entries in the weight

matrix, and vice versa. Besides, the phase domain is not an unbounded space

as the weight domain but a high-dimensional hypercube with a valid phase

shift range of [-π, π). Though this validity constraint can be guaranteed by

projection onto a feasible set, it will cause optimization performance penalty.

Since phases will intrinsically wrap around to the valid range, the solution

space can also be viewed as a periodically expanded space, such that the va-

lidity constraint can be relaxed, shown in Fig. 3.5. This feature is leveraged in

our optimization algorithm in later sections. The above analysis on phase do-

main characteristics casts both theoretical and practical difficulty on possible

co-optimization between the weight matrix and the phase domain, which pro-

vides a strong motivation for us to design an efficient on-chip learning method

directly in the phase space.

148

3.2.2.2 On-Chip Learning with Zeroth-Order Gradient Estimation

As shown in Fig. 3.3, an ONN consists of cascaded MZIs configured

with external controls. We denote all programmable MZI phases as Φ. During

ONN on-chip training, the final objective function L is optimized based on the

following gradient descent formulation,

Φ← Φ− α ∇̂ΦL, (3.7)

where ∇̂ΦL is the zeroth-order estimation whose expectation approximates the

true gradient∇ΦL with an error bound shown in Eq.(3.5). Similar to Eq.(3.6),

the stochastic zeroth-order gradient can be evaluated on a mini-batch as,

∇̂ΦL =
1

2σ2|S|

|S|∑
i=0

(
L(xi;Φ+∆Φi)− L(xi;Φ−∆Φi)

)
∆Φi, (3.8)

where xi is one example in a mini-batch S; ∆Φi is a random high-dimensional

perturbation sampled from a multivariate Gaussian distribution N(0, σ2). How-

ever, the optimization performance of stochastic gradient descent based meth-

ods highly depends on the accuracy of gradient estimation [130]. High variance

in gradient estimation could generally lead to a slow convergence rate and de-

graded solution optimality. In this section, we will focus on the adopted tech-

niques and theoretical analysis to improve ONN on-chip training efficiency and

accuracy by reducing the computational and sampling complexity as well as

minimizing the gradient estimation error.

On-Chip Learning Efficiency Improvement High efficiency is one of the

major targets when performing ONN on-chip training. To efficiently leverage

149

the ultra-fast ONN hardware platform to estimate the zeroth-order gradient,

we propose to use a parallel mini-batch-based asymmetric gradient estimator

as follows,

LS(x;Φ) =
1

|S|

|S|−1∑
i=0

L(xi;Φ),

∇̂ΦL =
1

σ2

(
LS(x;Φ+∆Φ)− LS(x;Φ)

)
∆Φ,

(3.9)

where LS(·) averages the loss over a mini-batch. Two reasons account for the

superior efficiency of the proposed estimator. First, a sample-efficient asym-

metric estimator replaces its symmetric counterpart Eq. (3.8) [148] to achieve

fewer function queries. Second, this estimation is performed in parallel with

a fixed perturbation ∆Φ used for all examples within a mini-batch S. Thus,

this method is at least |S| times more efficient than the single-example-based

method (Eq. (3.8)). Specifically, it eliminates expensive averaging operations

over |S| length-d gradient samples, while only a cheap averaging operation on

scalar loss functions is required. Moreover, our method shares the same ∆Φ

in a mini-batch, leading to |S| times fewer Gaussian variable samples than its

single-example-based counterpart.

From the perspective of hardware implementation, this parallel gra-

dient estimation can be achieved by a readily available wavelength-division

multiplexing (WDM) technique that enables fully parallel optical signal pro-

cessing [177, 54]. As shown in Fig. 3.3, a mini-batch of input data, e.g.,

16 or 32, can be encoded into parallel optical signals with k = |S| different

wavelengths and then input into the ONN chip through the same waveguides.

150

Different output wavelengths can be filtered and separated by corresponding

WDM de-multiplexer, and finally detected by photodiode arrays in the end.

Gradient estimation based on Eq. (3.9) costs only two function queries,

thus can lead to convergence issues due to a large variance, especially with a

larger dimension d. In the following section, we will focus on variance analysis

and reduction techniques.

On-Chip Learning Accuracy Improvement To reduce the gradient es-

timation variance, we adopt its sample average with Q+1 function queries as

follows,

∇̂ΦL =
1

Qσ2

Q−1∑
q=0

(
LS(x;Φ+∆Φq)− LS(x;Φ)

)
∆Φq, (3.10)

where the sampling factor Q is the number of independent perturbations used

to calculate the sample average of gradient estimation.

We show the variance bound of this parallel mini-batch-based asymmet-

ric zeroth-order gradient estimator. First, a standard assumption of stochastic

gradient descent is given on the upper bound of the variance of the stochastic

gradient on a mini-batch [148]. If the original function L is β-smooth, we can

assume

ES[||∇ΦLS −∇ΦL||2] ≤ σ2
s . (3.11)

Based on the above assumption, the variance upper bound of stochastic zeroth-

order gradient estimator [148] is derived as,

ES,∆Φ[||∇̂ΦL−∇ΦLσ||2] ≤ O
(σ2β2d3

Q
+

σ2
sd

|S|Q
+
||∇ΦL||2d

Q

)
. (3.12)

151

(a) (b)

Figure 3.4: (a) Training curve with different sampling factor Q; (b) training
curve with different sampling variances σ. A 3-layer ONN with configuration
of 8-16-16-4 is used, where 16 represents 16 neurons at that hidden layer.

The above theoretical conclusion implies that increasing the sampling

factor Q can effectively minimize the gradient estimation variance as illustrated

in Fig. 3.4(a). Besides, a smaller sampling variance σ theoretically reduces the

first term of the variance upper bound, but it is not sensitive within a wide

range as observed in Fig. 3.4(b). Hence, during ONN on-chip training, the

sampling factor, and mini-batch size are major tunable hyperparameters that

can achieve a trade-off between gradient estimation error and function query

complexity under certain ONN forward budget.

This zeroth-order gradient estimation based method quickly explores in

the phase space till a roughly converged solution, as shown in Fig. 3.5, but it

may still have some accuracy degradation due to stochastic gradient sampling

error (Eq.(3.12)). If more function queries are allowed to recover the accuracy

loss, we propose to extend this algorithm with SparseTune, a light-weight

fine-tuning procedure based on random coordinate-wise phase tuning. The

152

Figure 3.5: Optimization trajectory with the proposed on-chip training algo-
rithm in the relaxed, periodic phase space.

complete two-stage on-chip learning algorithm is described in Alg. 3. At this

second-stage SparseTune, a randomly selected subset of phases {ϕi}Mi=1 with

cardinality M are sequentially tuned for each individual coordinate, shown in

the second part of optimization trajectory in Fig. 3.5. This sparse tuning costs

more function queries per iteration than the first stage as M > Q, but it is

overall more efficient than brute-force training as M ≪ d and Tf ≪ T . It

is effective as it leverages the sparsity assumption in the parameter space [5]

for variance reduction, thus can boost the optimization performance with less

expensive parameter sweeping.

3.2.3 Robust ONN Learning with in situ Thermal Variation

As a high-performance analog neuromorphic platform, ONN inevitably

encounters robustness issues that could lead to possible accuracy degradation,

where thermal cross-talk is among one of the most critical concerns [171, 140].

In this section, we will justify the robustness advantages of our on-chip learning

153

Algorithm 3 FLOPS+: ONN On-Chip Training With Zeroth-Order Opti-
mization
Input: ONN forward function L(·), initial MZI phases Φ0, training dataset X,

initial learning rate α0, total iterations T , starting iteration for SparseTune
Tf , cardinality of finetuned phases M , and initial tuning step size δϕ0;

Output: Converged phases ΦT−1;
1: for t← 0 · · ·Tf − 1 do ▷ First stage training
2: LS(x

t;Φt), xt ∼ X ▷ ONN forward on a mini-batch
3: {∆Φt

0, · · · ,∆Φt
Q−1} ∼ N(0, (σt)2Gt) ▷ Sample ∆Φ

4: ∇̂ΦtL = 1
Q(σt)2

∑Q−1
q=0

(
LS(x

t;Φt +∆Φt
q)− LS(x

t;Φt)
)
∆Φt

q

5: Φ̂t ← Φt − αt∇̂ΦtL ▷ Phase updating
6: αt+1 = Update(αt) ▷ Learning rate decay
7: end for
8: for t← Tf · · ·T − 1 do ▷ Second stage sparse tuning
9: Randomly sample a mini-batch xt from X

10: Randomly select a set of phases {ϕi}Mi=1 ⊆ Φt

11: for each phase ϕi ∈ {ϕi}Mi=1 do
12: if L(xt;ϕt

i + δϕt) < L(xt;ϕt
i) then

13: ϕt+1
i ← ϕt

i + δϕt

14: else
15: ϕt+1

i ← ϕt
i − δϕt

16: end if
17: end for
18: δϕt+1 = Update(δϕt)
19: end for

method over traditional software training with thermal cross-talk.

Thermo-optic phase shifters are widely used to configure the MZI arrays

on the ONN chip. Cross-talk exists among nearby devices, e.g., between two

phase shifters or between phase shifters and waveguides, by influencing their

relative refractive index n, which is difficult to accurately model in an efficient

way for several reasons. First, due to heat propagation, the temperature at any

point on the chip is fully correlated with others, which can be ideally modeled

154

(a) (b)

Figure 3.6: Thermal variation simulation for a 9×9 MZI triangular array based
on Poisson’s equation. (a) Initial heat source distribution; (b) steady normal-
ized temperature distribution.

with a Poisson’s equation. Solving the steady temperature distribution of the

whole chip will be time-consuming during training. Second, The heat source

is not a single point but has a heat distribution along the physical dimen-

sions of the device, which means different segments of the phase shifter will

have different values of refractive index n under different temperatures. Hence

the phase shift induced is given by the integral along the device dimensions.

Third, the thermal impact from the phase shifters to neighboring waveguides

is more complicated, as waveguides have different shapes, e.g., lines, curves,

and circles. An accurate cross-talk model requires prohibitive computation

that is rather challenging to consider as the chip scales up. In the presence of

thermal cross-talk T(·), ONN on-chip training can be formulated as optimizing

in the projected phase space,

Φ∗ = argmin
Φ

L(x;T(Φ)), (3.13)

155

(a) (b)

Figure 3.7: (a) Comparison between software training and on-chip learning. UP ,
TS, and UP−1 represent unitary parametrization, thermal simulation, and inverse
unitary reconstruction, respectively. (b) Runtime cost of unitary parametrization
and inverse reconstruction.

To resolve this robustness issue when optimizing Eq. (3.13), thermal varia-

tion can be modeled during ONN training. Back-propagation-based software

training may encounter severe efficiency and effectiveness issues, as shown

in Fig. 3.7(a). Modeling thermal variations during software training is time-

consuming and inaccurate. It requires computationally-intensive SVD, unitary

parametrization UP , and its inverse reconstruction UP−1 to switch between

the weight matrix domain W and the corresponding phase domain Φ. To

accurately obtain the projected phases Φn = T(Φ), thermal variation with

cross-talk simulation needs to be injected in each training iteration. This

whole procedure suffers from inefficiency and poor scalability given the high

computational cost and runtime cost of unitary parametrization and accurate

thermal simulation. Our proposed on-chip learning method can inherently

avoid those expensive domain transfer and inaccurate variation modeling via

phase domain optimization with in situ thermal variation. Thus it can im-

156

prove the ONN robustness with much higher learning efficiency than software

training.

3.2.4 Experimental Results

To evaluate the effectiveness and efficiency of our proposed ONN on-

chip learning algorithm, we compare inference accuracy and the number of

ONN forward propagation with 1) brute-force phase tuning (BFT) [171, 256]

algorithm, 2) particle swarm optimization (PSO) based on-chip training [241]

algorithm, 3) our proposed algorithm with stochastic zeroth-order gradient es-

timation (FLOPS), and 4) our proposed algorithm with a second-stage sparse

tuning (FLOPS+). Experiments are conducted on a Vowel Recognition dataset [39]

to perform vowel phoneme classification. We implement all methods in Py-

Torch with an NVIDIA GTX 1080 GPU and an Intel Core i7-3770 CPU. We

use two 3-layer ONN configurations in our experiments: 1) 8-16-16-4 and 2)

10-24-24-6, where 10 and 24 represent the input length and the number of neu-

rons, respectively. We adopt a learning rate α=2 with an exponential decaying

rate of 0.985, a sampling standard deviation σ=0.002, and a mini-batch size

|S|=32, which is technically realizable by modern WDM techniques.

3.2.4.1 ONN Training Method Comparison

In the comparison experiments, the brute-force on-chip phase tuning

method (BFT)[171, 256] sequentially perturbs |Φ| = d phases with a decaying

perturbation δϕ, compare the perturbed loss function with the original one,

157

(a) (b)

Figure 3.8: (a), (b) are training curve comparisons among different methods
with ONN configurations of 8-16-16-4, and 10-24-24-6, respectively. BFT is
trained for 50 epochs, and other methods are trained for 200 epochs.

and update each phase according to,

ϕi ←

ϕi + δϕ, if L(x, ϕi + δϕ) < L(x, ϕi)

ϕi − δϕ, if L(x, ϕi + δϕ) ≥ L(x, ϕi)
(3.14)

The particle swarm optimization (PSO) initializes a population of P phase so-

lutions {Φp}Pp=1, and iteratively updates the population towards a randomly

mixed direction between their globally best-performing solution and individ-

ually best solution after P function evaluations. Note that as mentioned in

Section 3.2, the adjoint variable method (AVM) [99] is not compared because

it requires expensive in situ light intensity measurement in the device-level

such that it is technically intractable to realize on larger systems.

Based on the training curve comparison in Fig. 3.8, we notice a slow and

unstable convergence for BFT method. We cut off the plot after certain func-

tion queries for clear demonstration, while BFT actually takes an extremely

long time to converge. For PSO-based ONN on-chip training [241], we adopt an

158

experimentally optimal set of hyper-parameters for a fair comparison, where

initial velocity is within [-2,2], inertia weight w=0.5, individual cognitive con-

stant c1=0.5, and social constant c2=1. PSO stagnates at a poor saddle point

in an early stage, which is hard to overcome since only zeroth-order oracle

information is used [5]. Our proposed algorithm (FLOPS) quickly explores the

phase space along the estimated zeroth-order gradient directions towards a

relatively low training loss with cheap function query complexity. Extended

with sparse tuning procedure, shown in Fig. 3.8(b), FLOPS+ takes longer to

converge but effectively boosts the ONN learning performance, such that the

accuracy gap is minimized compared to the best result.

Besides inference accuracy, we give theoretical analysis and practical

measurements for the learning efficiency of the above four methods. BFT

sequentially sweeps over all phases Φ ∈ Rd, leading a query complexity of

O(Tλd), where λ is the average number of function query at each tuning

step. Assuming either case in Eq.(3.14) happens with the same probability,

we estimate λ as 3/2. PSO method performs practically well on small-scale

ONN training (<100 MZIs) [241], but a population-related complexity O(TP)

makes it query-inefficient when optimizing a larger number of phases. FLOPS

is sample-efficient with a query complexity of O(TQ), where Q is practically

much lower than either P or λd. FLOPS+ offers a controllable approach to

trade off between efficiency and performance. It costs more ONN forward

as O((T − Tf)Q + TfλM), while better solution optimality can be obtained,

and the training efficiency advantages still hold. To validate the potential and

159

scalability of FLOPS, we estimate the runtime of on-chip training methods and

BP-based software training with a 3-layer example ONN configuration of 200-

500-500-10. As analyzed in Section. 3.2.3, BP-based software training suffers

from computational inefficiency due to expensive domain transfer between

W and Φ. The runtime breakdown for each software training iteration is

estimated as,

tsw ≈ tfp + tsvd + tup + trec + tbp

≈ 70ms+ 200ms+ 20s+ 10s+ 20ms ≈ 30s
(3.15)

where forward tfp, backward tbp, and SVD tsvd take around 300 ms. Unitary

parametrization tup and its inverse reconstruction trec takes the majority of the

runtime. Figure. 3.7(b) shows that tup and trec grow rapidly as the matrix size

scales up. This runtime cost could be unaffordable once the thermal simulation

is added. For the same ONN configuration, the runtime estimation of on-chip

training is [195],

toc ≈ tprog + topt + tpd + tad + titer

≈ 10µs+ 1000ps+ 20ps+ 1ns+ 1ms ≈ 1ms,
(3.16)

where tprog is the thermal constant time for programming MZIs, topt is the

propagation latency of optics through the 3-layer MZI arrays, tpd is the photo-

detection time with WDM de-multiplexing, tad accounts for the analog-to-

digital conversion time, and titer adds the computation overhead for gradient

calculation and phase updates. Given the sampling factor Q ≪ 30s
1ms

, our

proposed ONN on-chip learning method potentially benefits from order-of-

magnitude learning efficiency improvement over the traditional software-based

training.

160

Table 3.1: On-chip training methods comparison in terms of inference accuracy
and number of ONN forward on a Vowel Recognition dataset. PSO-150 repre-
sents a population of 150; FLOPS-40 sets Q to 40. FLOPS+-40, FLOPS+-60
are extended with SparseTune with M=200 and 400 respectively. Normal-
ized number of ONN forward is also shown for efficiency comparison.

ONN Setup Methods Test Accuracy #ONN Forward

8-16-16-4(|Φ| = 448)
BFT [171, 256] 99.08% 268.8 K (4.1)
PSO-150 [241] 56.89% 256.0 K (3.9)
FLOPS-40 99.08% 65.6 K (1.0)

10-24-24-6(|Φ| = 960)

BFT [171, 256] 99.38% 864.0 K (3.9)
PSO-300 [241] 43.83% 720.0 K (3.3)
FLOPS-60 95.06% 219.6 K (1.0)
FLOPS+-60 98.17% 405.1 K (1.8)

3.2.4.2 On-chip Training under in situ Thermal Variation

To demonstrate the robustness of our proposed learning method in

the presence of device thermal variation, we evaluate the impact of thermal

cross-talk among MZIs on inference accuracy. Given that the phase shift

is proportional to the temperature ∆Φ ∝∆T [84, 195], all phase shifts will

increase since thermal cross-talk slows down the heat dissipation. We show the

inference accuracy under thermal cross-talk for different methods in Fig. 3.9.

The pure software learning method achieves high accuracy under the

variation-free case (∼98%), but degrades by ∼5% when the thermal varia-

tion is considered. The brute-force phase tuning (BFT) method demonstrates

higher inference accuracy than pure software training but still suffers from

inefficiency due to a considerable amount of function queries. Particle swarm

optimization (PSO) generally shows unsatisfying robustness against thermal

variation, leading to less than 50% accuracy for both ONN setups. Our pro-

posed method FLOPS naturally considers the thermal non-ideality during on-

161

(a) (b)

Figure 3.9: (a), (b) are accuracy comparisons under thermal cross-talk with
ONN configurations of 8-16-16-4 and 10-24-24-6, respectively. The gap be-
tween Software (Ideal) and Software (Crosstalk) shows the accuracy drop
caused by thermal cross-talk.

chip learning and demonstrates better robustness and better function query

efficiency than previous works. After fast exploration of FLOPS, an extra

SparseTune is considered to trade off between efficiency and performance.

At the cost of more function queries, our two-stage zeroth-order optimization

method FLOPS+ achieves the best accuracy and robustness under thermal

cross-talk while still more efficient than previous methods.

3.2.5 Summary

In this work, we propose a solution to enable efficient and robust ONN

on-chip learning based on stochastic optimization with zeroth-order gradient

estimation. A parallel mini-batch-based asymmetric gradient estimator FLOPS

is adopted to leverage the ultra-fast parallel photonic chips to improve train-

ing efficiency as well as learning performance. Extended with a lightweight

162

sparse phase tuning SparseTune, a two-stage FLOPS+ is introduced to fur-

ther boost the accuracy under thermal variation while still maintaining better

efficiency than previous works. We give a theoretical analysis of the variance

bound of FLOPS, function query complexity, and runtime comparison with

other methods. Experimental results on a Vowel Recognition dataset with

two ONN setups are demonstrated. Compared with the brute-force method

and PSO-based method, our proposed framework FLOPS provides a 3∼4×

more efficient on-chip learning protocol with better inference accuracy and

robustness to thermal variation.

3.3 MixedTrain: Power-Aware Sparse Zeroth-Order Op-
timization for ONN On-Chip Learning

Training methodologies for integrated ONNs still lack a scalable and

efficient solution so far. Previous works have the following disadvantages: 1)

nontrivial Gaussian sampling cost, 2) divergence issues due to high variance,

3) high energy consumption, and 4) hardware-unfriendly weight update step

size. In this work, we propose a novel mixed-training framework that enables

scalable on-chip optimization with more stable convergence, higher training

This MixedTrain chapter is based on the following publication.

1. Jiaqi Gu, Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Ray T. Chen, and David Z.
Pan, “Efficient On-Chip Learning for Optical Neural Networks Through Power-Aware
Sparse Zeroth-Order Optimization," Association for the Advancement of Artificial
Intelligence (AAAI), Feb. 2021.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

163

efficiency, and much lower power consumption under a non-ideal environment.

Compared with previous state-of-the-art (SOTA) methods, our mixed-training

framework has the following advantages.

• Efficiency: our mixed-training strategy achieves 3∼7× fewer ONN for-

ward and much lower computation complexity than SOTA ONN on-chip

learning methods.

• Robustness: our method adopts a novel optical device mapping with

mixed-active/passive regions to protect ONNs from device variations

and thermal crosstalk, leading to better noise tolerance than previous

solutions.

• Stability: our stochastic zeroth-order sparse coordinate descent opti-

mizer (SZO-SCD) outperforms SOTA zeroth-order optimizers with more

stable convergence and better performance in on-chip accuracy recovery.

• Scalability: our proposed optimizer leverages two-level sparsity in on-

chip training, extending the ONN learning scale to >2,500 MZIs.

• Power: we propose a lightweight power-aware dynamic pruning tech-

nique, achieving >90% lower power consumption with near-zero accu-

racy loss or computation overhead.

3.3.1 Preliminaries

In this section, we will introduce the architecture of integrated ONNs,

prior work in ONN on-chip training, and background knowledge about stochas-

164

tic zeroth-order optimization.

3.3.1.1 Stochastic Zeroth-Order Optimization

To solve optimization problems when analytical Jacobian is infeasible

to compute, zeroth-order optimization (ZOO) plays a significant role, e.g.,

black-box adversarial attacks, policy-gradient-based reinforcement learning,

and circuit parameter optimization [20, 21, 59, 130, 61, 248, 200, 205]. Var-

ious ZOO methods have been proposed with a mathematically-proven con-

vergence rate, including stochastic gradient descent with Nesterov’s accelera-

tion [148], zeroth-order coordinate-wise Adam ZADAM and Newton’s method

ZNewton [20], zeroth-order adaptive momentum method ZOO-AdaMM [20],

stochastic three-points [10], stochastic momentum three-points [61], etc. Most

zeroth-order optimizers have a convergence rate dependent on dimensionality,

which intrinsically makes them less efficient and less scalable than higher-order

optimizers. In this work, we explore two-level sparsity in stochastic zeroth-

order optimization to enable scalable and efficient ONN on-chip training.

3.3.2 Problem Formulation and Analysis

Before discussing our proposed on-chip learning framework, we give

a formulation to the resource-limited ONN learning problem. In practical

ONN applications, the ultimate target is to leverage photonic neural chips

to complete machine learning tasks with high accuracy, low latency, and low

energy consumption, under environmental changes and device-level variations.

165

...

...

...

...
...

...

...

...

...

Input

Modulator

Objective

Evaluator

WDM Optical Input SVD-based ONN Layer

WDM Signal

Readout

Laser

Source

Fanout

Network

Photo-

detection

V* Σ U

...

...

MR

Modulator

Passive

MZI

MR

Filter

λ

Frequency

Comb

Active

MZI

MixedTrain

Optimizer

y
Lϕ

v

...

Weight

Modulator

... ...

Figure 3.10: Schematic of ONN on-chip learning framework with stochastic
zeroth-order mixed-training.

The optimization variables are optical device configurations, i.e., phase shift

for all MZIs Φ, including those in the unitary matrices U and V ∗ and the

diagonal matrix Σ. The objective is the task-specific loss function. We are

the first to formulate the ONN on-chip learning as a resource-limited accuracy

recovery problem in the unitary space,

Φ∗ = argmin
Φ∼R

LDtrn(W (Φ)), (3.17)

s.t. W (Φ) = U(ΦU)Σ(ΦS)V ∗(ΦV),

U(ΦU) = DU

2∏
i=N

i−1∏
j=1

Rij(ϕ
U
ij),

V ∗(ΦV) = DV

2∏
i=M

i−1∏
j=1

Rij(ϕ
V
ij),

∥Σ(ΦS)∥∞ < m,

Φ ∈ [0, 2π),

Power(Φ) ≤ P̃ ,

∫
t

Power(Φt) dt ≤ Ẽ,

C(∇ΦL)≫ C̃ ≫ C(L),C ≤ C̃,

166

where Dtrn is the training set. In each layer, the weight matrix W ∈ RM×N

is constructed by U , Σ, and V ∗, where U and V ∗ are constrained in the

Stiefel manifold, and the ℓ∞-norm of the diagonal matrix Σ is bounded by

a empirically largest signal scaling range m. The optimization parameters Φ

are constrained in a hypercube within 0 degree and 2π degree. The photonic

device programming power has to honor a maximum power budget P̃ during

ONN inference. Also, the total energy used to program ONN devices during

on-chip training is bounded by an energy budget Ẽ. The last constraint is the

computation budget for the optimizer, which can not afford to calculate the

Jacobian ∇Φ(L) shown in Eq. (3.3), but the objective evaluation is ultra-fast

with optics.

To solve the optimization problem on this SVD-based architecture, we

directly optimize the decomposed matrices U and V ∗ within the Stiefel man-

ifold. Previous work proposed Riemannian optimization [97], unitary regular-

ization [253], and unitary projection [74] to satisfy the unitary constraints. In

this work, we optimize the phases Φ in the Reck-style unitary parametriza-

tion space to achieve minimum computation complexity. For the diagonal

matrix, we optimize it as diag(Σ) = m(cosϕS
0 , · · · , cosϕS

min(M,N)−1), such

that the optimization variables can be unified with ΦU and ΦV . To facilitate

power optimization, we do not use the periodic phase space relaxation [72].

Instead, we wrap the phase within the valid hypercube by ϕ = (ϕ mod 2π)

at each iteration to avoid unnecessary power once the updated phase exceeds

2π. To meet the computation budget, we will introduce a lightweight tech-

167

Hardware-agnostic
Offline Pre-train

ONN Deployment
(Passive/Active Mixed)

Thermal Crosstalk
(Only from Active MZIs)

Device Variation
(Passive & Active MZIs)

Forward

Backward

In situ Mixed-Training

StepA
cc

.
StepA

cc
.

StepA
cc

.

W

...

...

...

Modulator Optimizer

Active
Region

Passive
Region

1. Trainable
2. Crosstalk

1. Untrainable
2. No crosstalk

Objective

Voltage v
P

h
as

e
 ϕ

0

π

2π
Δγ

D
is

tr
ib

.

0

Γ

Phase ϕ

D
is

tr
ib

.

0

Ω

Phase ϕ

3. Consume Power
4. Requires DAC

3. Power-free
4. DAC-free

Figure 3.11: Mixed-training flow in the practical ONN deployment.

nique to handle power and energy constraints. The computation budget of

the resource-constrained platform can be satisfied by manual searching in the

optimizer design space, where lightweight zeroth-order optimization methods

will be promising candidates.

3.3.3 Proposed Power-Aware Mixed-Training Framework

In the practical ONN deployment, apart from the basic constraints

listed in Eq. (3.17), non-ideal environment and device noises are necessary

to be considered in the learning framework. Therefore, we propose a mixed-

training strategy to efficiently solve this noisy learning problem with all the

aforementioned constraints in Fig. 3.11.

3.3.3.1 Scalable Mixed-Training Strategy

To enable efficient ONN on-chip learning on practical networks and

datasets, we propose a mixed-training strategy to reduce the optimization di-

mensionality and minimize tunable devices for better convergence and lower

power consumption. Specifically, we assume a model is pre-trained and pre-

168

pared for edge ONN deployment. Then, our target is to implement the pre-

trained model on practical ONN engines while recovering the accuracy given

non-ideal environment and device variations. The naive solution is to deploy

a fully active ONN where all optical devices are thermo-optically tunable with

maximum learnability [72]. However, This leads to high control complexity,

power consumption, and non-ideal thermal crosstalk. In this work, we propose

a mixed-training strategy that integrates passive and active ONNs to balance

efficiency, robustness, and learnability, shown in Fig. 3.11. Now we introduce

three stages in the entire ONN on-chip mixed training flow.

Hardware-Unaware Pre-training For the MZI-based ONN architecture,

Hardware-unaware training based on back-propagation is firstly performed

with an ideal computational model on digital electrical platforms, e.g., GPUs

and CPUs, to obtain target device configurations.

ONN Deployment with Mixed Active/Passive Regions We proposed

to deploy the ideally-trained model on the photonic circuits using a mixed

passive/active design, where most parameters in two unitary matrices U and

V ∗ are fixed by using passive optical devices. Only the diagonal matrix Σ and

a small fraction (α ≪ 1) of phases in two unitary matrices are implemented

by active devices to enable its adaptability and learnability. We denote fixed

phases in the passive region as P and tunable phases in the active region as A.

In practical applications, device variations, e.g., phase shifter γ coef-

169

ficient drift, and thermal crosstalk among MZIs will be present, leading to

output perturbation and thus accuracy loss, shown in Fig. 3.11. The phase

shifter variations come from environmental temperature changes or manufac-

turing errors. Under variations, the power-to-phase-shift factor γ of both ac-

tive and passive phase shifters will drift from the ideal value as γv = γ +∆γ,

where we assume the noise is sampled from a truncated Gaussian distribution

∆γ ∈ N(0, σ2
γ). We assume the rotation angle is proportional to the device-

related coefficient as ϕ ∝ γ, and the noisy phase is denoted as ϕv = ϕγv/γ. For

N rotation angles, this variation is described as a diagonal perturbation ma-

trix Φv = ΓΦ. In terms of thermal crosstalk, the correlated heat distribution

among thermo-optic devices leads to an increase in the steady temperature. In

the heat steady state, the mutual correlation of phases within N noisy rotation

angles Φv can be described by a coupling matrix as Φc = ΩΦv,


ϕc
0

ϕc
1
...

ϕc
N−1

 =


ω0,0 ω0,1 · · · ω0,N−1

ω1,0 ω1,1 · · · ω1,N−1
...

...
ωN−1,0 ωN−1,1 · · · ωN−1,N−1




ϕv
0

ϕv
1
...

ϕv
N−1


s.t. ωi,j = 1, ∀ i = j

ωi,j = 0, ∀ i ̸= j and ϕj ∈ P (3.18)

0 ≤ ωi,j < 1, ∀ i ̸= j and ϕj ∈ A.

The diagonal factor ωi,j, i = j is the self-coupling coefficient, which is typically

set to 1. ωi,j, i ̸= j is the mutual coupling coefficient [140]. As a physical fact,

only active devices are thermal aggressors that perturb adjacent devices, while

170

passive devices do not impact their neighbors since they have zero heat dissi-

pation. Hence mutual coupling factors ωi,j, i ̸= j are set to 0 if ϕj represents

a passive MZI. We can unify the γ noise with the crosstalk as Φc = ΩΓΦ.

Therefore, the objective is re-written as

Φ∗ = argmin
Φ∼R

LDtrn(W (ΩΓΦ)). (3.19)

Mixed-Training with Stochastic Zeroth-Order Sparse Coordinate De-

scent (SZO-SCD) In this stage, we introduce stochastic zeroth-order sparse

coordinate descent (SZO-SCD) to tune the active devices for in situ accuracy

recovery. Since the pre-trained model is roughly converged, the ZO-gradient-

based method [72] will suffer from divergence issues due to its gradient es-

timation variance. In contrast, our SZO-SCD optimizer is more suitable for

near-convergence fine-tuning in the phase space. In iteration t, only a frac-

tion (s ≪ 1) of active devices Φs = {ϕ0, · · · , ϕs|A|−1} ⊆ A are selected for

coordinate descent as follows,

ϕt+1
i ← argmin

ϕi

{LIt(ϕ
t
i + δϕ),LIt(ϕ

t
i − δϕ)}. (3.20)

The mini-batch evaluation of LI(·) can be processed in parallel by using

WDM [191, 54] shown in Fig. 3.10.

The advantages of the mixed-training strategy with SZO-SCD lie in

several aspects. First, since the method reduces the tunable parameters of

an N × N weight matrix from N2 to N + sαN2 per iteration, the optimiza-

tion efficiency will be considerably improved. Second, the passive ONN part

171

consumes nearly zero energy, leading to approximately (1-α) power saving.

Third, the optimization dimensionality is reduced from the full O(N2) space

to a sparse subspace, which accelerates the convergence of our zeroth-order

learning algorithm with a slimmed computation demand. Fourth, this method

has O(1) computation complexity and O(1) memory complexity per iteration,

which is nearly the cheapest optimizer in the design space.

3.3.3.2 Power-Aware Dynamic Pruning

On resource-limited edge applications, low power consumption will be

a preferable feature to enhance endurance. We assume the power of an active

phase shifter is proportional to the rotation angle P ∝ ϕ, then we can use the

phase ϕ ∈ [0, 2π) as a fast device tuning power estimator. A straightforward

approach to handle this power constraint is to use Lagrangian relaxation to

add the power constraint in the objective as follows,

Φ∗ =argmin
Φ∼R

LDtrn(W (ΩΓΦ)) + λP (Φ)

P (Φ) =
∑
ϕ∈Φ

(ϕ mod 2π),
(3.21)

and solve it using the alternating direction multiplier method (ADMM). How-

ever, the dual update for power optimization will cause convergence issues,

which will be shown in our later experiment. To implicitly consider power

constraints in the optimization, we propose a power-aware dynamic pruning

technique to further boost power efficiency with stable convergence. The de-

tailed power-aware optimization algorithm is described in Alg. 4. In lines 8-12,

the optimizer will prune backward steps with probability p if the objective in-

172

Algorithm 4 SZO-SCD with Power-aware Dynamic Pruning
Input: ONN forward function L(·), phases Φ0 after ONN deployment, train-

ing dataset Dtrn, total iterations T , Active set A, sparsity of fine-tuned
phases s, initial tuning step size δϕ0 > 0, and power awareness p ∈ [0, 1],
power estimator power(·);

Output: Converged phases ΦT−1;
1: for t← 0 · · ·T − 1 do
2: Randomly sample a mini-batch It from Dtrn

3: Randomly select Φt
s = {ϕt

0, · · · , ϕt
s|A|−1} ⊆ A without replacement

4: for ϕt
i ← ϕt

0, · · · , ϕt
s|A|−1 do

5: if LIt(ϕ
t
i + δϕt) < LIt(ϕ

t
i) then

6: ϕt+1
i ← ϕt

i + δϕt

7: else
8: if power(ϕt

i − δϕt) > power(ϕt
i) then

9: b ∼ B(p) ▷ Sample from Bernoulli distribution with
probability p to take 1

10: ϕt+1
i ← ϕt

i − b · δϕt

11: else
12: ϕt+1

i ← ϕt
i − δϕt

13: end if
14: end if
15: end for
16: δϕt+1 = Update(δϕt) ▷ Step size decay
17: end for

creases in the positive direction and the power consumption increases in the

negative direction. The intuition behind this efficient power-aware pruning is

that our SZO-SCD only queries the zeroth-order oracle, such that the step-back

is not guaranteed to be a descent direction. This uncertainty enables us to em-

bed a power-constraint handling mechanism to dynamically prune step-backs

that do not have a descent guarantee but lead to a certain power increase. The

probabilistic power-awareness factor p also provides a parametric approach to

173

95

90

85

Te
st

 A
cc

u
ra

cy
 (

%
)

0 100k 200k
#ONN Forward

α = 1
α = 0.8
α = 0.6
α = 0.4
α = 0.2
α = 0.1
α = 0.05

86

84

82

Ideal 98.2%
27k 91k97

127k 205k

(a)

90

85

Te
st

 A
cc

u
ra

cy
 (

%
)

80

#ONN Forward
0 500K 1M

80
79

78

Ideal 97.5%

95
114k 568k

722k

(b)

90

85

80

Te
st

 A
cc

u
ra

cy
 (

%
)

75

#ONN Forward
0 20M 40M

84

83

Ideal 95.3%

(c)

Figure 3.12: Test accuracy with different mixed-training sparsity α. (a) MLP
(8-16-16-4) on Vowel Recognition, (b) MLP (10-24-24-6) on Vowel Recognition,
and (c) MLP (8×8-24-24-10) on MNIST. Close-up views show the accuracy
after deployment.

balance power and solution quality.

3.3.4 Experimental Results

Experiments are conducted on a vowel recognition dataset [39], MNIST [115],

FashionMNIST [222], and CIFAR-10 [112] for image classification. As a proof-

of-concept demonstration, those datasets are standard and practical for ONNs.

We implement all methods in PyTorch with an NVIDIA Quadro RTX 6000

GPU and an Intel Core i7-9700 CPU. We adopt a step size δϕ=0.02 with an

epoch-wise exponential decaying rate of 0.985 and a mini-batch size of 32. The

upper bound m set for Σ is 3. Following a common setting, the std. of phase

variation σ(γ) is set to 2e-3 and the mutual-coupling factor ω is set to 2e-3

only for adjacent MZIs. Rectified linear units (ReLU) [85] with an upper limit

of 4 are used as the nonlinearity.

174

3.3.4.1 Evaluation on Mixed-Training Strategy

Figure 3.12 demonstrate the inference accuracy curve after on-chip de-

ployment using our mixed-training strategy. Active phases are randomly se-

lected from all phases. With ∆γ ∈ N(0, 0.002) phase shifter variations and

ω=2e-3 thermal crosstalk between adjacent devices, the initial accuracy varies

among different mixed-training sparsity values. A larger mixed-training spar-

sity can provide protection to the PIC from thermal crosstalk since more pas-

sive devices generate fewer thermal noises. The convergence of those curves

shows that only a small fraction (5%-15%) of devices is necessary to perform

on-chip learning for accuracy recovery, while simply tuning every parameter

has the lowest efficiency and effectiveness among all settings. When α is set

to 5%-15%, we observe the fastest convergence speed, leading to 3.7×-7.6×

higher training efficiency, i.e., fewer function queries, than ours with a large

α. This mixed-training strategy makes it possible to recover the accuracy of

larger-scale ONNs with much fewer function queries and lower power.

3.3.4.2 Evaluation on the Sparsity of SZO-SCD

Figure 3.13 demonstrates how different sparsity s influences the on-chip

learning performance under a given mixed-training sparsity α = 0.15. Among

all sparsity values, 60% is the best tuning sparsity that leads to the fastest

convergence speed on small datasets. In contrast, on MNIST, since the dataset

variance is much larger than Vowel Recognition, a highly-sparse learning strat-

egy (s <0.1) is more suitable to balance the variance and generalization in the

175

Te
st

 A
cc

u
ra

cy
 (

%
)

0 10k 20k
#ONN Forward

94

90

86 s = 1
s = 0.8
s = 0.6
s = 0.4

s = 0.2
s = 0.1
s = 0.05

(a)

95

Te
st

 A
cc

u
ra

cy
 (

%
)

0 50k 100k
#ONN Forward

90

85

80

(b)

92

Te
st

 A
cc

u
ra

cy
 (

%
)

0 2M 4M
#ONN Forward

88

84

80

(c)

Figure 3.13: Evaluation with different sparsity s in SZO-SCD. α is set to 0.15
for all models. (a) 8-16-16-4 on Vowel Recognition dataset. (b) 10-24-24-6 on
Vowel Recognition dataset. (c) (8×8)-24-24-10 on MNIST dataset.

Table 3.2: Comparison with SOTA ZO optimizers in terms of optimizer cost
per iteration, ONN query complexity per iteration, and memory complexity.
lr is the step size. We evaluate on MNIST with a 3-layer optical MLP (64-24-
24-10). T is the total iteration. d is the total number of variables (d=2,350).
The sampling factor Q is set to 60 as used in FLOPS [72].

Optimizer α s lr Computation #ONN forward Memory Best Acc.
ZADAM [20] 1 1 1e-3 O(d) 2Td (4700T) O(d) diverge
ZADAM [20] 0.15 0.1 1e-3 O(αsd) 2Tαsd (70.5T) O(αd) 88.1%
ZNewton [20] 1 1 1e-3 O(d) 3Td (7050T) O(1) diverge
ZNewton [20] 0.15 0.1 1e-3 O(αsd) 3Tαsd (105.75T) O(1) diverge
STP [10] 1 1 2e-2 O(d) 2Td (4700T) O(1) diverge
STP [10] 0.15 0.1 2e-2 O(αsd) 2Tαsd (70.5T) O(1) 90.2%
FLOPS [72] 1 1 1e-1 O(Qd) TQ (60T) O(d) diverge
FLOPS [72] 0.15 0.1 1e-1 O(Qd) TQ (60T) O(αsd) 83.5%
SZO-SCD (Proposed) 0.15 0.1 2e-2 O(αsd) 1.5Tαsd (52.88T) O(1) 93.5%

stochastic optimization. In other words, overly-greedy optimization caused by

large s values is harmful to stochastic learning. Note that a higher sparsity,

e.g., s <0.02, will lead to accuracy loss since the variance is too large for the

optimizer to converge, which is not shown in the figure for brevity.

3.3.4.3 Compare with Other Zeroth-Order Optimizers

To validate the efficiency of our proposed SZO-SCD, we compare a

variety of state-of-the-art ZO optimizers on different sparsity in Table. 3.2.

176

Proper α and s are adopted to obtain a good trade-off between accuracy and

efficiency. Learning rates reported are empirically most suitable values with

equal parameter searching efforts for all methods. The comparison results

provide several important insights. First, in high-dimensional ONN param-

eter space, the gradient-based methods, e.g., FLOPS, generally show poor

performance and unstable convergence due to gradient estimation variance.

Even for ZADAM and ZNewton that adaptively adjust the step size, they suf-

fer from divergence in the phase-domain optimization unless a descent in the

objective can be partially guaranteed like our proposed coordinate descent

method. Second, the two-level sparsity is indeed necessary to achieve stable

convergence and good model generalization. FLOPS with two-level sparsity

coincides with [152] and shows better convergence than the dense counterpart.

Third, gradient-based methods require an arbitrarily tiny step size (<1e-3)

for gradient estimation and weight updating, which is not practical given lim-

ited device control resolution. In contrast, our method only needs a medium

step size, corresponding to 8-bit control precision, a more hardware-friendly

configuration in analog neuromorphic computing. Fourth, interestingly, the

stochastic coordinate-wise three-points method (STP) leads to worse inference

accuracy than our method due to its overly-greedy updating mechanism that

potentially harms generalization as follows,

ϕt
i ← argmin

ϕi

{L(ϕt−1
i),L(ϕt−1

i + δϕ),L(ϕt−1
i − δϕ)}. (3.22)

Table. 3.3 further shows the average performance on different datasets with

CNNs. Overall, our proposed mixed-training strategy with SZO-SCD shows

177

Table 3.3: Average accuracy(std.) among different optimizers over 3 runs.
The CNN setting is 16×16-c8s2-c6s2-10 for MNIST, 32×32-c8s2-c8s2-10 for
FMNIST, and 32×32-c8s2-c8s2-c8s2-10 for CIFAR-10. c8s2 is 8 kernels with
size 3×3 and stride 2. α and s are set to 0.05 and 0.1 for all optimizers.

Optimizer MNIST FMMIST CIFAR-10
ZAdam 88.51%(0.10) 68.16%(0.13) diverge
ZNewton diverge 67.60%(0.23) diverge
STP 93.74%(0.30) 75.43%(3.86) diverge
FLOPS diverge 67.27%(0.19) diverge
SZO-SCD 94.88%(0.26) 82.63%(0.04) 51.35%(0.86)

88

Te
st

 A
cc

u
ra

cy
 (

%
)

0 10k 20k
#ONN Forward

92

96

320

280

240To
ta

l P
h

as
e

Sh
if

t

p = 0
p = 0.2
p = 0.4

p = 0.6
p = 0.8
p = 1

w/o Mixed-Training (α=1) 1451.0

6.2x

339.4

233.6
1.5x

(a)

80

Te
st

 A
cc

u
ra

cy
 (

%
)

0
#ONN Forward

85

90

To
ta

l P
h

as
e

Sh
if

t

95

20k 60k40k

800

700

600

500

w/o Mixed-Training (α=1) 4199.3

478.08.8x

763.7

1.6x

(b)

84
Te

st
 A

cc
u

ra
cy

 (
%

)
0

#ONN Forward

88

92

To
ta

l P
h

as
e

Sh
if

t

1800

1400

1000

1M 2M

w/o Mixed-Training (α=1) 9846.6

9.8x

1937.6

993.6
2.0x

(c)

Figure 3.14: Estimated power and inference accuracy with different power
awareness p. The mixed-training sparsity α is selected as 0.15. The sparsity
s for SZO-SCD is set to 0.6 for (a) and (b), and is set to 0.1 for (c). Mod-
els/datasets are the same as Fig. 3.12

the best convergence and accuracy with the smallest computation and memory

cost.

3.3.4.4 Evaluation on the Power-Aware Dynamic Pruning

We evaluate the effectiveness of our proposed power-aware dynamic

pruning technique in Fig. 3.14. Different power awareness values lead to

slightly different inference accuracy after convergence. However, fully-power-

178

Table 3.4: Comparison among ADMM-based method and our dynamic power-
aware pruning. Power is estimated by the total phase shifts of active MZIs.
λ is the weight of the power penalty. The 3-layer optical MLP is 64-24-24-10,
and the dataset is downsampled MNIST. We use α=0.15, s=0.1.

Method Hyperparam. Power (rad) Test Accuracy
ADMM λ= 0.05∼0.3 2077∼2367 92.8%∼79.0%
ADMM λ> 0.3 - diverge
Proposed p= 0∼1 1938∼994 93.9%∼93.1%

aware (p=1) pruning can cut down 30%-50% power compared with the power-

unaware version (p=0). Compared with the naive ONN deployment without

mixed-training, our power-aware mixed-training can save a total ∼90% power.

This lightweight pruning method not only reduces the power in inference P,

shown in the final power value at the end of the curve, it also saves the training

energy
∫
t
P dt indicated by the area under the power curve. We also compare

with ADMM to show the superiority of our dynamic pruning technique in

Table 3.4. The Lagrangian-relaxation-based formulation and ADMM-based

optimization algorithm are not suitable for power-aware ONN on-chip learn-

ing. A small λ in the dual update step has a trivial influence on the total

power, while a large λ leads to unstable convergence. In contrast, our pro-

posed method can provide stable power constraint handling with a parametric

mechanism to achieve a trade-off between accuracy and power.

3.3.4.5 Evaluation on CNNs and Different Datasets

We further evaluate the effectiveness of our proposed mixed-training

strategy with sparse tuning on convolutional neural networks (CNNs). We use

179

Table 3.5: Power reduction on CNNs (same as Table. 3.3). DAcc. and RAcc.
mean deployed and recovered accuracy. PR-Ours and PR-FLOPS are power
reduction compared to ours(p=0) and FLOPS. All datasets use α=0.05, s=0.1,
and p=1.

Dataset DAcc. RAcc. PR-Ours. PR-FLOPS
MNIST 87.4% 95.5% 98.8% 97.6%
FMNIST 65.7% 82.6% 95.6% 98.1%
CIFAR-10 36.0% 52.5% 96.7% 96.7%

im2col algorithm to implement convolution with general matrix multiplication

(GEMM). Table 3.5 shows the accuracy recovery results and power improve-

ment on three different datasets compared with w/o mixed-training or power

handling. On three practical datasets, our proposed methods demonstrate sta-

ble accuracy recovery for optical CNN architectures under device variations

while reducing the total inference power by >95%.

3.3.5 Summary

In this work, we propose an efficient ONN on-chip learning frame-

work MixedTrain to perform in situ accuracy recovery. We are the first

to formulate the ONN on-chip learning problem with device non-ideality and

power constraints. A sparse mixed-training strategy SZO-SCD is proposed

to explore two-level sparsity in ONN deployment and optimization, leading

to better training efficiency and robustness. A lightweight dynamic power-

aware pruning is proposed to implicitly optimize power with near-zero com-

putational cost or accuracy loss. Compared with SOTA methods, our frame-

work MixedTrain boosts the efficiency by 3.7×-7.6× with better crosstalk-

180

robustness, 2× better scalability, and over 10× better power efficiency.

3.4 L2ight: Enabling Scalable ONN On-Chip Learning
via Efficient in-situ Subspace Optimization

Prior work [242, 99, 72, 65] only demonstrated small prototypes, and

their scalability and efficiency are rather limited. To push the limits of ONN

on-chip training, we propose an efficient three-stage learning framework L2ight

to achieve 10,000× improvement in the training scalability. The framework

consists of variation-agnostic identity calibration, alternate projection-based

parallel mapping, and multi-level sparse subspace learning. The main contri-

butions of this work are four-fold,

• Scalability. For the first time, an ONN learning protocol can scale up to

million-level parameters under practical circuit non-ideality, over 4-order-of-

magnitude more scalable than prior arts.

• Efficiency. We explore multi-level sparsity in in-situ gradient evaluation

to trim down unnecessary on-chip training energy and runtime cost.

• Learnability. By trading redundant representability, our restricted sub-

This L2ight section is based on the following publication.

1. Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Zixuan Jiang, Ray T. Chen, and David
Z. Pan, "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Effi-
cient in-situ Subspace Optimization," Conference on Neural Information Processing
Systems (NeurIPS), Dec. 2021.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

181

space optimization can provide ONNs with enough adaptability for on-

device self-learning and task transfer.

• Robustness. Various practical device noises and process variations are

considered in situ to facilitate noise-resilient photonic AI engines.

• To our best knowledge, this is the first framework that supports on-chip

training on million-parameter ONNs, over 10,000× more scalable and 30×

more efficient than prior arts. We open-source a PyTorch-centric [154] ONN

library TorchONN and release our on-chip training framework at link.

3.4.1 Preliminaries

Optical Neural Network Training Methods. Beyond offline training [74],

ONN on-chip training methods are proposed to offload the process back onto

photonics [99, 72, 65], shown in Table 3.6. Brute-force device tuning (BFT) [171,

257] and evolutionary algorithms [242] are applied to search MZI settings. An

adjoint variable method (AVM) [99] is proposed to directly evaluate gradi-

ents using in-situ light field monitoring. Stochastic zeroth-order optimization

(ZOO) [72, 65] is later applied to improve the training efficiency. However,

prior methods are hard to scale to larger ONNs either due to algorithmic

inefficiency or unrealistic hardware complexity.

Efficient NN Training Methods. Extensive work has been devoted to

accelerating DNN training, among which an important branch is sparse back-

propagation. Previous methods mainly focus on approximating matrix multi-

182

https://github.com/JeremieMelo/pytorch-onn
https://github.com/JeremieMelo/L2ight

Table 3.6: Scalability comparison with prior ONN on-chip training protocols
in terms of #Params they can handle, used algorithm, resolution requirement
(Req.), and circuit observability requirement. Coh. I/O is short for coherent
input/output [141, 238]. ZO, FO mean zeroth- and first-order methods.

BFT [171] PSO [242] AVM [99] FLOPS [72] MixedTrn [10] L2ight

#Params ∼100 ∼100 ∼100 ∼1000 ∼2500 ∼10 M
Algorithm ZO ZO FO ZO ZO ZO+FO
Resolution Req. Medium High Medium High Med Medium
Observability Req. Coh. I/O Coh. I/O Coh. I/O + Per device monitor Coh. I/O Coh. I/O Coh. I/O

plication by sparsifying the pre-activation gradients [181], forward and feed-

back matrices [3, 157], and input feature maps [153]. Quantization to the pre-

activation gradients is adopted in [216] to induce sparsity by trading off quan-

tization steps and performance. Other methods also exist, e.g., distributed

and low-precision training [7, 8, 104]. However, they are not readily applicable

to analog photonic engines, thus not in the scope of our discussion.

Subspace Neural Networks. Subspace neural networks are special DNN

models with restricted parameter space but demonstrate comparable repre-

sentability to classical NNs. Sparse NNs [82, 214], low-rank NNs [38, 114, 187],

structured NNs [40, 121, 209], Fourier-domain NNs [70, 144, 143], and general

frequency-domain NNs [71] were introduced to trim down the redundancy in

DNNs by restricting the NN structure, matrix rank, numerical resolution, etc.

In this work, we deeply explore the trade-off between ONN learnability, train-

ability, and efficiency in the restricted unitary subspace.

183

...

V* Σ U

... ...

...

...

GLB LCU

PTCPTC
E

O

O

E

GLB LCU

PTCPTC
E

O

O

E

GLB LCU

PTCPTC
E

O

O

E

GLB LCU

PTCPTC
E

O

O

E

...

Interconnects

Coherent

WDM

Input/

Readout

Coherent

WDM

Input/

Readout

L
2
ightL

2
ight

Figure 3.16: ONN architecture. PTC: photonic tensor core, GLB: global
buffer, LCU: local control unit, EO: electrical-to-optical conversion.

3.4.2 Synergistic ONN On-Chip Learning Framework L2ight

In this section, we give a formal description of the ONN on-chip training

problem and detailed demonstration of our proposed three-stage learning flow

L2ight, shown in Figure. 3.15.

(1) Identity Calibration (2) Parallel Mapping

Map 𝑼: Zeroth-Order Opt.Map 𝑼: Zeroth-Order Opt.

Map 𝚺: Optimal Singular-value
Projection

Map 𝚺: Optimal Singular-value
Projection

(3) Subspace Learning

In situ Backward
Feedback Sampling

In situ Backward
Feedback Sampling

Update 𝚺: Stochastic First-Order Opt.Update 𝚺: Stochastic First-Order Opt.

Calibrate 𝑼, 𝑽∗ to ෨𝑰: Zeroth-Order Opt.Calibrate 𝑼, 𝑽∗ to ෨𝑰: Zeroth-Order Opt.

All converge? Target Acc?

Yes

No
restart

if diverge

No

Yes

Record Best 𝚽𝑈, 𝚽𝑉Record Best 𝚽𝑈, 𝚽𝑉

Initialize 𝚽𝑈, 𝚽𝑉Initialize 𝚽𝑈, 𝚽𝑉

Map 𝑽∗: Zeroth-Order Opt.Map 𝑽∗: Zeroth-Order Opt.

Pretrained?

Forward
Data Sampling + Feature Sampling

Forward
Data Sampling + Feature Sampling

Yes

No

Manufactured ONN

Done

Target Acc?
No

Yes

Figure 3.15: Proposed three-stage ONN on-chip learning flow L2ight.

3.4.3 Understanding the ONN On-Chip Learning Problem

The ONN that supports on-chip learning is shown in Figure 3.16,

constructed by local storage, control units, interconnects, and photonic ten-

sor cores with coherent I/O [141, 238] and wavelength-division multiplexing

(WDM) [233, 191] for parallel processing. The target is to optimize MZI phases

Φ directly on chip under variations. Formally the hardware-restricted learning

184

problem is,

Φ∗ = argmin
Φ

L
(
W (ΩΓQ(Φ) +Φb);Dtrn

)
,

s.t. W (Φ) =
{
Wpq(Φpq)

}p=P−1,q=Q−1

p=0,q=0
, Wpq(Φpq) = Upq(Φ

U
pq)Σpq(Φ

S
pq)V

∗
pq(Φ

V
pq),

Upq(Φ
U
pq) = DU

pq

2∏
i=k

i−1∏
j=1

Rpqij(ϕ
U
pqij), V ∗

pq(Φ
V
pq) = DV

pq

2∏
i=k

i−1∏
j=1

Rpqij(ϕ
V
pqij),

Σpq(Φ
S
pq) = max(|Σpq|)diag(· · · , cosϕS

pq,i, · · ·), Φb ∼ U(0, 2π), Γ ∼ N(γ, σ2
γ).

(3.23)

The linear projection in an ONN adopts blocking matrix multiplication, where

the M×N weight matrix is partitioned into P ×Q blocks of size k×k. During

the optimization of Φ, we jointly consider control resolution limits Q(·) [74,

171], device process variations Γ [74, 72, 65], thermal crosstalk among adjacent

devices Ω [72, 261], and unknown phase bias due to manufacturing error Φb

for in-situ robustness-aware training. A detailed non-ideality analysis is in

Appendix .2.1. For practicality, robustness, and convergence consideration,

we select k=9, which is explained in Appendix .2.6.

3.4.4 Identity Calibration (IC): Variation-Agnostic Circuit State
Preparation

After manufacturing, unknown process variations in waveguides make

the initial state of PTCs unpredictable [195, 261]. A primary task is to prepare

U and V ∗ to be identity matrices. However, the calibration problem, i.e.,

minΦU ,ΦV

∑
p,q

(
∥Upq(Φ

U
pq) − I∥22 + ∥V ∗

pq(Φ
V
pq) − I∥22

)
, is not solvable given

the observability and controllability constraints on U and V ∗. The closest

auxiliary problem that we can solve is the one with absolute operations on

unitaries, i.e., minΦU ,ΦV

∑
p,q

(
∥|Upq(Φ

U
pq)| − I∥22 + ∥|V ∗

pq(Φ
V
pq)| − I∥22

)
. We

185

1 ⋯ 0

⋮ -1

1

0 -1

𝑼 = ෨𝑰, 𝑼 = 𝑰

1 ⋯ 0

⋮ -1

1

0 -1

𝑽∗ = ෨𝑰, 𝑽∗ = 𝑰

Sign flip

(a)

0 10 20 30 40

#PTC Forward (k)

10−1

(M
S
E
U

+
M
S
E
V

)/
2 ZGD

ZTP

ZCD

ZCD-B

(b)

Figure 3.17: (a) Identity calibration with sign flip. (b) Different ZO optimizers
on identity calibration. (ZGD: ZO gradient descent with momentum, ZCD: ZO
coordinate descent, ZTP: ZO three-point. B is the best solution recording.)

denote those two mean square errors as MSEU and MSEV . We rewrite it as

a surrogate minimization of LIC that can lead to the same solution,

min
Φ

∑
p,q

∥Upq(Φ
U
pq)ΣpqV

∗
pq(Φ

V
pq)Σ

−1
pq −I∥. (3.24)

The optimal solution for this auxiliary problem is U = V ∗ = Ĩ, where

Ĩ is not guaranteed to be an identity matrix but a more general sign-flipping

matrix with arbitrary and unobservable sign flips on the same columns in U

and rows in V ∗, shown in Figure 3.17(a). We adopt zeroth-order optimiza-

tion (ZOO) on ΦU and ΦV to calibrate U and V ∗ to approach Ĩ, shown in

Figure 3.17(b). We show the converged solution of Eq. (3.24) with unobserv-

able sign flips and suboptimality only has marginal impacts on the following

training procedure in later sections.

186

0 10 20 30 40 50 60

#PTC Forward (k)

10−2

10−1

100
N

or
m

.
D

is
ta

n
ce

Error drop by OSP

ZGD

ZTP

ZCD

ZCD-B

(a)

0 10 20 30 40 50 60

#PTC Forward (k)

0
20
40
60
80

100

A
cc

u
ra

cy
(%

)

2-5% Acc boost
by OSP

ZGD

ZTP

ZCD

ZCD-B

(b)

Figure 3.18: ZTP and ZCD-B perform the best in parallel mapping. The
optimal singular-value projection leads to a significant error drop and accuracy
jump.)

3.4.5 Parallel Mapping (PM): Alternate Projection-based Model
Deployment

The target is to map the pre-trained weights W onto photonic MZI

meshes W̃ (Φ) with high fidelity.

We formulate the parallel mapping as a batched k × k-block-wise re-

gression problem,
min
Φ

∑
p,q

∥W̃pq(Φpq)−Wpq∥22. (3.25)

As analyzed before, ∂W
∂ΦU and ∂W

∂ΦV are too expensive to compute in situ.

We propose a parallel mapping flow with alternate zeroth-order optimization

on ΦU and ΦV . After convergence, we will perform analytical optimal singular-

value projection (OSP) to minimize the regression error given fixed singular

vectors.

We show why OSP gives the optimal solution under sign flips and how

to perform it on the PTC.

187

Claim 1. Optimal singular-value projection (OSP): the optimal singular value

problem, i.e., Σopt = argminΣ ∥UΣV ∗ −W ∥, can be analytically solved on-

chip with arbitrary and unknown sign flip.

Proof.

Σopt =diag
(
U−1W (V ∗)−1

)
= diag

(
U ∗WV

)
= diag

(
(Ĩ∗V ∗W ∗UĨ)∗

)
.

(3.26)

OSP can be directly achieved using the limited operation set, i.e., {U ,U ∗,V ,V ∗},

supported by the reciprocal PTC itself. Specifically, we configure V ∗ = Ĩ and

Σ = I, and shine in a coherent WDM light beam that carries W from right

ports. Since the coherent photonic circuit is reciprocal [141], we can read

ĨU ∗W on the left ports. Then we configure U = Ĩ and Σ = I, and shine in

its adjoint field from left, i.e., W ∗UĨ∗. We can directly read out the projected

optimal diagonal on the right because the sign flips in the unitary matrices

naturally cancel out on the diagonal.

Figure 3.18 compares different ZO optimizers on this task. Coordinate-

wise optimizers (ZCD [124] and ZTP [44]) outperform the gradient-based ZGD [60]

with higher accuracy and convergence speed. This procedure is highly paral-

lel and efficient since the mapping involves no stochasticity and only happens

locally within each PTC. We can also observe that OSP effectively reduces the

normalized matrix distance (∥W − W̃ ∥22/∥W ∥22) and boosts the accuracy by

2-5% almost for free.

188

...

...𝑥

𝑽∗ 𝑰 𝑰

𝑰 𝑦𝑉

...

𝑼 𝑰 𝑰

𝜕ℒ

𝜕𝑦
 𝑰 ∗

𝜕ℒ

𝜕𝑦Σ

Forward

Backward

𝜕ℒ

𝜕𝚺
= 𝑰 ∗

𝜕ℒ

𝜕𝑦Σ
 ⊙ 𝑰 𝑦𝑉

...

Figure 3.19: The proposed three-step in-situ subspace gradient calculation
method.

3.4.6 Subspace Learning: Hardware-Aware Multi-Level Sparse Train-
ing

Besides mapping from an offline-trained model, L2ight also supports

in-situ self-learning fully on chip. We name this feature as subspace learning.

To make L2ight hardware-aware, we trade expensive full-space trainability

for efficient subspace gradient evaluation, i.e., ∂L
∂Σ

which coincides with the gen-

eral frequency-domain ONNs [70, 71] and subspace NN design concept [180].

Since this learning stage involves stochasticity, it turns out to be the efficiency

bottleneck, especially the backward pass. Hence, we explore multi-level spar-

sity for efficient in-situ gradient approximation.

189

3.4.6.1 In-situ Subspace Gradient Acquisition via Reciprocity in
Optics

The conventional way to compute first-order gradients w.r.t. Σ is
∂L
∂Σ

= diag
(
U ∗ ∂L

∂W
V
)
. However, ∂L

∂W
= ∂L

∂y
xT requires arbitrary matrix mul-

tiplication, which is not implementable by weight-stationary PTCs. Hence, we

remap it as,
∂L

∂Σ
=

∂L

∂yΣ

⊙ yV =
(
ĨU ∗∂L

∂y

)
⊙ (ĨV ∗x). (3.27)

By shining in coherent WDM beams carrying the inputs and upstream gra-

dients forward and backward through the reciprocal PTCs, respectively, as

shown in Figure 3.19, the weight gradients can be efficiently obtained with

lightweight element-wise multiplication ⊙, which can be offloaded to electrical

units. Ĩ naturally cancels out by the Hadamard product with no impacts on

gradient fidelity.

3.4.6.2 Multi-Level Sparse Subspace Learning

Inspired by sparse backpropagation methods [181, 153, 210, 151, 157],

we propose multi-level sparse subspace learning to cut down both energy cost

and total time steps in on-chip gradient evaluation.

Balanced Feedback Sampling. To improve the efficiency of the error feed-

back process, i.e., W T ∂L
∂y

, as shown in Figure 3.20, we sample the feedback

matrix W T ∈ RN×M with a structured sparse mask PW = cW (SW ⊗ 1) gen-

erated by the Kronecker product between a boolean mask SW ∈ {0, 1}Q×P

with sparsity αW and an all-ones matrix 1, where the scaling factor cW is

190

𝑊11
𝑇 𝑊21

𝑇 ⋯

𝑊12
𝑇 ⋱

⋮

𝑊𝑝𝑞
𝑇

𝑑𝑦1

𝑑𝑦2

…

𝑑𝑦𝑝

𝜕𝑓

Feedback Sampling

Idle PTC →less energy/time
Backward

Balanced
Row-wise
Sampling

√

𝑊11
𝑇 𝑊21

𝑇 ⋯

𝑊12
𝑇 ⋱

⋮

𝑊𝑝𝑞
𝑇

𝑑𝑦1

𝑑𝑦2

…

𝑑𝑦𝑝

Imbalanced
Layer-wise
Sampling

×

2

2

3

1

d𝑦d𝑥

𝑾𝑇

Figure 3.20: Balanced v.s. imbalanced feedback matrix sampling.

set to 1
αW

= PQ
Tr(STW SW)

for unbiased estimation, proven in Appendix .2.4. The

efficiency benefits come from two aspects: (1) the structurally masked PTCs

are entirely idle, directly saving energy, and (2) the product accumulation

depth/step is reduced by a factor of αW , effectively trimming time steps.

However, two major downsides exist on traditional uniform and layer-

wise topk sampling [157].

First, on a backward path, multiple feedback sampling operators will

be cascaded, such that importance-unaware uniform sampling can lead to

an exponentially large variance [153]. Second, topk sampling is overly greedy

and tends to break the load balance as the feedback latency can be bottle-

necked by the longest partial product accumulation path, shown in Figure 3.20.

To tackle this, we propose a balanced top-K sampling (btopk) to draw SW

from a guided distribution that locally prefers blocks with large Frobenius

191

0 30 60 90 120 150

#Mini-Batch (K)

0.6

0.7

0.8

0.9

1.0

A
v
g
.

A
n

g
u

la
r

S
im

.

btopk + none

0.2

0.4

0.6

0.8

0.9

(a)

CONV1 CONV2

CONV Layer

0.6

0.7

0.8

0.9

A
v
g
.

A
n
g
u
la

r
S
im

.

btopk (αW = 0.6)
none acc-92.08%

exp acc-92.54%

var acc-92.47%

100

101

A
v
g
.

N
o
rm

.
D

is
ta

n
ce

(b)

0 30 60 90 120 150

#Mini-Batch (K)

0.5

0.6

0.7

0.8

0.9

A
v
g
.

A
n
g
u
la

r
S
im

.

spatial column
0.2

0.4

0.6

0.8

0.9

(c)

CONV1 CONV2 CONV3

CONV Layer

0.7

0.8

0.9

1.0

A
v
g
.

A
n
g
u
la

r
S
im

.

uniform (αC = 0.6)
none acc-(92.53%)

exp acc-(92.56%)

var acc-(92.72%)

0.0

0.4

0.8

1.2

A
v
g
.

N
o
rm

.
D

is
ta

n
ce

(d)

Figure 3.21: Average gradient angular similarity with different feedback spar-
sity (a) and three normalization methods (b). none, exp, and var represents
no, expectation-maintained, and variance-maintained normalization. Average
gradient angular similarity with spatial and column sampling (c) and three
normalization methods (d).

norm, which can be efficiently evaluated by ∥Wpq∥2F = Tr(|Σpq|2). It strikes

a balance between gradient variance and bias by fine-grained row-wise top-K

sampling and eliminates load-imbalance by guaranteeing the same sparsity for

different rows of W T , i.e.,
∑

p SW (1, :) =
∑

p SW (2, :) = · · · =
∑

p SW (Q, :).

Figure 3.21(a), 3.21(b) shows the gradient approximation fidelity in terms of

average angular similarity [15] and normalized matrix distance. Our btopk-

sampled weight gradients align well with the true gradients. With the unbiased

(exp) normalization factor αW , btopk shows the best gradient angular simi-

192

𝑥11 𝑥12 ⋯ 𝑥1𝑊

𝑥21 𝑥22

⋮

𝑥𝐻1

𝑥11 𝑥12 ⋯ 𝑥1𝑊

𝑥21 𝑥22

⋮

𝑥𝐻1

𝑥1

𝑥2

…

𝑥𝑞

(1) Spatial Sampling

𝑥1

𝑥2

…

𝑥𝑞

𝑥11 𝑥12 ⋯ 𝑥1𝑊

𝑥21 𝑥22

⋮

𝑥𝐻1

𝑊

𝐻

𝐵 × 𝐶𝑖𝑛

Pixel Information Loss

𝑥11 𝑥12 𝑥22 ⋯

𝑥12 𝑥22

⋮ 𝑥22

𝑥22

𝐵𝐻′𝑊′

𝐶
𝑖𝑛
𝐾
2

(2) Column Sampling 𝜕ℒ

𝜕𝑦

𝜕ℒ

𝜕𝐖

𝑦

Partial Info Remained

𝑥11 𝑥12 𝑥22 ⋯

𝑥12 𝑥22

𝑥22

𝑥22

⋮ ⋮

𝑥11 𝑥12 ⋯ 𝑥1𝑊

𝑥21 𝑥22

⋮

𝑥𝐻1

𝑦

No Runtime Reduction

Less Runtime

Figure 3.22: Spatial and column sampling for CONV.

larity and inference accuracy compared with others.

Information-Preserving Column Sampling. Input feature sparsification

can also effectively cut down the gradient evaluation cost [157, 153], espe-

cially for costly CONV layers. However, with traditional spatial sampling

(SS) [157, 153], the input feature map x barely maintains its sparsity regu-

larity after being transformed to flattened patches X via im2col if the kernel

size is larger than 1, shown in Figure 3.22. Hence, we propose a novel column

sampling (CS) as a better solution. We sample X using a mask SC{0, 1}H
′W ′

with a uniform sparsity αC , which is shared across batches with negligible

overhead. This leads to both information preservation and efficiency improve-

ment. First, in Figure 3.22, a pixel appears in multiple columns, such that

193

partial information can be maintained after column sampling. Second, this

highly-structured column dropping directly translates to less PTC forward en-

ergy and fewer partial gradient accumulation steps. In contrast, with a spatial

mask SS and spatial sparsity αS, the masked pixel will be completely dropped

with poor regularity after im2col, at the cost of large variance due to informa-

tion loss and almost no runtime improvement on this dense linear projection

engines. Note that for CONV1×1, CS turns out to be equivalent to SS, which

can simultaneously save memory and runtime. Figures 3.21(c), 3.21(d) show

that our proposed CS can obtain better gradient approximation fidelity than

prior SS. Different normalization has small effects on model accuracy since

feature sampling only happens locally within each layer, without any variance

cascade effect. Note that simultaneous scaling by αW and αC tends to generate

overly-confident gradient approximation, which empirically leads to harmful

gradient variance. Hence, we will adopt αC=1 in all experiments.

Data Sampling. After parallel mapping, the ONN is initialized fairly close

to the target pre-trained model. It is reasonable and intuitive to calibrate it

with a representative calibration set instead of the entire training set. Inspired

by the mini-batch dropping (SMD) technique [210], we integrate this SMD tech-

nique into our framework to further explore data-level sparsity. Within one

training epoch, we randomly skip each iteration with probability αD, directly

translating to training time reduction.

194

3.4.7 Complexity Analysis of Three Stages in L2ight

We assume the total step in IC, PM, and SL is T1, T2, and T3, re-

spectively. The ONN has L layers, each including an N × N weight matrix

partitioned into multiple k × k blocks.

Identity Calibration and Parallel Mapping. Each block optimizes k(k−

1) phases using ZOO. All LN2/k2 blocks are optimized in parallel. The total

step is 2k(k − 1)T1 for IC and 2LN2(k − 1)T2/k + 3 for PM. The total PTC

call is around 2LN2T1 or 2LN2T2 for IC and PM, respectively.

Subspace Learning. We assume the feature map size is H × W with a

batch size of B. The detailed complexity analysis is given in Appendix .2.7.

The total step is approximately T3LNBHW/k.

According to our training cost profiler, IC and PM in total is 3-order-

of-magnitude cheaper than the SL stage, since the batched parallel regression

is deterministic and data-independent.

3.4.8 Experimental Results

3.4.8.1 Experiment Setup

Datasets. We evaluate L2ight on Vowel [39], MNIST [115], FashionM-

NIST [222], CIFAR-10, CIFAR-100 [112], and TinyImagenet [35]. On CIFAR-

10/100 and TinyImagenet, we adopt random crop, flip, and color jittering for

augmentation.

Models. All models are implemented with our open-source PyTorch-centric

195

ONN library torchonn. We evaluate on a customized MLP (8-16-16-4) [65] on

Vowel, CNN-S (CONV8K3S2-CONV6K3S2-FC10) [65] on MNIST, a CNN-L

({CONV64K3}×3-Pool5-FC10) on FashionMNIST, and VGG-8 [36] / ResNet-

18 1 [86] on CIFAR-10/100. CNN-L/FashionMNIST is used for ablation stud-

ies. VGG-8/ResNet-18 on CIFAR-10/100 are used for accuracy and efficiency

comparison. Training details can be found in Appendix .2.5.

Efficiency Evaluation. We assume fully parallel 9×9-blocking matrix multi-

plication in photonic tensor cores and sequential partial product accumulation

in electronics. All experiments and performance measurements are based on

software simulation with various noise modeling. Our simulator counts the

total number of PTC calls as the normalized energy indicator and the longest

accumulation path as the normalized latency/runtime indicator. Details of

profiling can be found in Appendix .2.7.

3.4.8.2 Main Results

Scalability Comparison with Prior ONN Learning Protocols. Fig-

ure 3.23 compares L2ight with two SOTA ONN on-chip training protocols,

FLOPS [72] and MixedTrn [65]. For ZO methods, i.e., FLOPS and MixedTrn,

we count the energy and latency of forward PTC query in Appendix .2.7. Prior

protocols can only handle toy models (∼1,000 params) given their algorithmic

inefficiency and instability, while our L2ight shows >10,000× higher scala-

bility to handle large ONNs (∼10 M) on challenging tasks with comparable

1https://github.com/kuangliu/pytorch-cifar

196

https://github.com/JeremieMelo/pytorch-onn
https://github.com/kuangliu/pytorch-cifar

V/MLP
(∼500)

M/CNN
(∼1500)

F/CNN
(∼90k)

C10/VGG8
(∼4M)

C100/Res18
(∼10M)

ONN Scale (Dataset/Model)

0

20

40

60

80

100

A
c
c
u
ra

c
y

(%
)

1.7×speed↑
6.9×energy↓

Pretrain FLOPS MixedTrn L2ight

Figure 3.23: Compare scalability with prior protocols [72, 65].

accuracy to full-space pre-trained models. Though MixedTrn achieves com-

parable accuracy to L2ight on small benchmarks, we are still 1.7× faster and

6.9× more energy efficient.

The superiority of L2ight provides three important insights: (1) de-

coupling ZOO from stochasticity and partitioning a large-scale regression prob-

lem into a batch of sub-tasks can greatly mitigate the curse of dimensionality

both in convergence and efficiency. (2) mapping before learning can fully lever-

age the pre-trained model to reduce the learning cost. Prior methods have to

learn from a severely corrupted solution under variations, while L2ight re-

covers most accuracy via mapping, leaving a very light workload for subspace

learning. (3) Restricted subspace learning provides adequate degree of free-

dom for training from scratch and task transfer. Also, its compatibility with

first-order methods significantly boosts the trainability and breaks the scala-

bility barrier for ONN training. We now validate the above insights through

extensive experiments.

197

Training Efficiency Comparison with Prior Sparse Training Meth-

ods. In Figure 3.24, we show accuracy and efficiency comparison of 1) baseline

L2ight-SL (BS), 2) L2ight-SL with spatial sampling (RAD), 3) L2ight-SL

with weight and spatial sampling (SWAT-U), and 4) L2ight-SL with all three

introduced sampling methods (feedback, column, and data sampling), and 5)

our proposed full flow with IC, PM, and sparse SL (L2ight). To clarify,

L2ight-SL performs subspace learning on-chip from scratch without using

pre-trained weights, while L2ight includes the full flow, i.e., pre-training,

mapping, and on-chip training. When we perform subspace learning from

scratch, our proposed multi-level sampling strategies outperform previous RAD

and SWAT-U by ∼3× in hardware cost with comparable accuracy. Though

RAD can save the forward peak memory, it leaves the most expensive back-

ward pass unoptimized, which does not fully exploit the sparsity in ONN

training. SWAT-U tries to save forward cost by simultaneously sparsifying the

forward and feedback weights with shared masks/patterns. However, in our

experiment, the forward sparsification considerably degrades the performance,

which dilates the efficiency benefits from it. Parallel mapping can fully lever-

age the pre-trained weights and help our full three-stage flow L2ight achieve

the best accuracy with much faster convergence, leading to over 30× higher

energy efficiency and fewer time steps.

Note that the energy efficiency and latency improvement is not just on

the photonic part but a systematic performance boost. Our three-level sampling

methods directly skip the pruned block, which means the corresponding cost of

198

24.97 24.97
21.25

7.02

1.40

34.08 34.08
29.01

9.56

0.96

34.10 34.10

29.02

9.59

0.96

0

20

40

60

80

100

0

10

20

30

40

VGG-8/SVHN VGG-8/CIFAR-10 VGG-8/CIFAR-100

A
c

c
u

ra
c

y
 (

%
)

N
o

rm
.
E

n
e

rg
y
 C

o
s

t

Forward Backward Weight Backward Input Accuracy

3.6 ×

35.5 ×

310.3 309.6

259.7

96.5

9.6

310.3 310.3 259.7

96.6

9.2

231.0 229.8
207.7

73.1

7.8
0

20

40

60

80

100

0

100

200

300

400

ResNet-18/CIFAR-10 ResNet-18/CIFAR-100 ResNet-18/TinyImagenet

A
c

c
u

ra
c

y
 (

%
)

N
o

rm
.
E

n
e

rg
y
 C

o
s

t

Forward Backward Weight Backward Input Accuracy

3.2 ×
32.3 ×

*Energy scaled
by 0.1

Figure 3.24: Accuracy and hardware efficiency comparison on VGG-8 (Top)
and ResNet-18 (Bottom).

memory transaction, computation, control, and communication are removed

together. Therefore, the sampling sparsity can be directly translated to the

energy/latency improvement ratio regardless of whether the electrical part

dominates the total cost.

199

3.4.9 Ablation Studies and Discussion

3.4.9.1 Multi-Level Sparsity in Efficient Training

Feedback Sparsity. To investigate the impact of feedback sampling strate-

gies, we visualize the gradient approximation fidelity and accuracy curves in

Figure 3.25(a). uniform sampling shows varying performance under different

sparsity values due to large gradient variances. topk shows worse performance

after sufficient steps due to its biased gradient estimation from overly greedy

block selection. In contrast, our proposed load-balancing btopk strikes a bal-

ance between variance and bias via block-wise sampling and also leads to less

runtime as it forces load balance among massively parallel PTCs. In Table 3.7,

feedback sampling saves 50-60% time steps on the most costly error feedback

∇xL, leading to 1.5-1.8× overall time step reduction with minimum accuracy

drop.

(a)

0.9

0.2

(b)

0 30 60 90 120

#Mini-Batch (K)

86

88

90

92

A
cc

u
ra

cy
(%

)

CNN-L FashionMNIST
αW = αC = 0.6

0

0.5

0.6

0.7

0.8

0.9

(c)

Figure 3.25: Accuracy v.s. weight gradient computation steps with three
feedback sampling strategies (a) and different feature sampling techniques
(b). Accuracy (93.02%) from a full-space trained model (green). CNN-
L/FashionMNIST is used for (a) and (b). Compare different data sampling
sparsity (c).

Feature Sparsity. Figure 3.25(b) compares the accuracy and weight gradient

computation time steps on two feature sampling techniques. Though spatial

200

sampling (ss) can save peak storage by dropping a subset of activations dur-

ing the forward pass, it shows no gradient computation step reduction. Our

hardware-friendly column sampling (cs) directly leads to energy and runtime

reduction due to its structured sparsity. In Table 3.7, when column sampling

is further added, we observe ∼50% PTC energy saving on weight gradient

computation ∇ΣL at the cost of ∼1% accuracy drop.

Data Sparsity. In the data level, we also demonstrate how SMD with sparsity

αD impacts the training efficiency in Figure 3.25(c). With the best selected

αW and αC , data sparsity directly reduces training time by skipping itera-

tions [210]. The data sampling selects a uniform subset of the training set to

represent the original data distribution, leading to less data processing with

comparable generalization in the extracted features. Another explanation is

that the variance increased by partial replacement serves as a regularization

mechanism to improve the model performance [210]. For relatively easy tasks,

Table 3.7: Compare sampling strategies on CIFAR-10 in terms of accuracy,
activation size reduction, energy, and time step. Forward, weight gradient, and
error feedback are denoted as L, ∇ΣL, and ∇xL. L2ight-SL is learning from
scratch, and L2ight (IC→PM→SL) is the full flow with pre-trained weights
and non-ideal Ĩ.

Acc±σ (%) Act↓(%) Norm. PTC Energy Norm. #Step
L ∇ΣL ∇xL Total (Ratio) L ∇ΣL ∇xL Total (Ratio)

L2ight-SL (Baseline) VGG-8 86.66±0.13 - 8.58 17.16 8.34 34.08 (1.00) 32.64 5.49 92.02 130.14 (1.00)
+ Feedback Sampling (αW=0.6) 86.41±0.25 - 8.58 17.16 3.38 29.13 (1.17) 32.64 5.49 35.76 73.89 (1.76)

+ Column Sampling (αC=0.6) 85.58±0.01 - 8.58 7.16 3.38 19.12 (1.78) 32.64 4.67 35.76 73.07 (1.78)
+ Data Sampling (αD=0.5) 84.45±0.45 - 4.29 3.58 1.69 9.56 (3.56) 16.32 2.34 17.89 36.54 (3.56)

+ RAD [153] (αS=0.85) 83.68±0.58 11.78 8.58 17.16 8.34 34.08 (1.00) 32.64 5.49 92.02 130.14 (1.00)
+ SWAT-U [157] (αW=0.3, αS=0.6) 73.91±0.27 8.31 6.01 17.16 5.84 29.01 (1.17) 25.98 5.49 82.19 113.66 (1.15)
L2ight (IC→PM→SL) 90.20±0.05 - 0.43 0.36 0.17 0.96 (35.64) 1.63 0.23 1.79 3.65 (35.64)
L2ight-SL (Baseline) ResNet-18 92.37±0.08 - 72.24 144.49 93.60 310.33 (1.00) 463.40 27.23 1,478.84 1,969.48 (1.00)
+ Feedback Sampling (αW=0.5) 91.35±0.03 - 72.24 144.49 48.13 264.86 (1.17) 463.40 27.23 747.22 1,237.85 (1.59)

+ Column Sampling (αC=0.5) 90.02±0.16 4.47 72.24 72.49 48.13 192.86 (1.61) 463.40 15.68 747.21 1,226.30 (1.61)
+ Data Sampling (αD=0.5) 89.07±0.04 4.47 36.13 36.26 24.07 96.46 (3.22) 231.76 7.84 373.71 613.31 (3.21)

+ RAD [153] (αS=0.9) 89.44±0.17 46.60 72.26 143.72 93.60 309.58 (1.00) 463.53 26.03 1,478.84 1,969.00 (1.00)
+ SWAT-U [157] (αW=0.3, αS=0.5) 89.21±0.16 25.89 50.57 143.64 65.52 259.73 (1.19) 358.40 26.56 1,417.96 1,802.00 (1.09)
L2ight (IC→PM→SL) 93.91±0.02 4.47 3.61 3.62 2.41 9.64 (32.20) 23.16 0.78 37.34 61.29 (32.13)

201

aggressive sparsity (αD=0.8) is a sweet point, while for larger datasets shown

in Table 3.7, a medium sparsity (0.5) can be a good setting to balance both

the training cost and accuracy. With all three sampling methods integrated,

our L2ight-SL shows competitive accuracy and ∼3× higher efficiency than

RAD and SWAT-U. More advanced dataset sampling methods are left for future

exploration.

3.4.9.2 Learnability of Restricted Subspace ONNs

Impacts of Calibration/Mapping Quality. Table 3.7 shows that with

50 60 70 80 90

Mapped Acc (%)

0.0

0.2

0.4

0.6

0.8

1.0
E

n
er

g
y

(#
S
te

p
)

R
a
ti

o

from
scratch

9.9×

energy

step

acc

acc-NI

83

85

87

89

91

S
u
b
.

L
ea

rn
A

cc
(%

)

90.6

Figure 3.26: Impact of mapping
accuracy (VGG-8 CIFAR-10 with
αW=αC=0.6, αD=0.5). acc-NI is
the curve with non-ideal Ĩ.

IC and PM, the full L2ight flow achieves

the highest accuracy with 32-35× effi-

ciency boost over baselines. We further

evaluate the impact of different mapping

accuracy and calibration quality on sub-

space learning in Figure 3.26. First, par-

allel mapping or pre-training is not a

must. Our subspace learning supports

first-order optimization on-chip from random initialization. Second, the op-

timality on subspace bases influences the final accuracy as it determines the

upper bound of accuracy that can be recovered by subspace learning. With

roughly optimized space bases, i.e., U ,V ∗, subspace learning can efficiently

train basis coefficients, i.e., Σ, achieving 5-6% higher accuracy and 9.9× less

energy and steps compared with random unitaries (train from scratch). Third,

202

-30 0 30 60 90 120 150

#Mini-Batch (K)

50

60

70

80

90
A

cc
u
ra

cy
(%

)
CIFAR-100 CIFAR-10

Pretrain

Mapped

4.5×↓
1.9%↑

VGG8 (scra.)

VGG8 (tran.)

Res18 (scra.)

Res18 (tran.)

(a)

-30 0 30 60 90 120 150

#Mini-Batch (K)

40

50

60

70

80

90

A
cc

u
ra

cy
(%

)

ResNet-18

TinyImagenet CIFAR-10/100

Pretrain

Mapped

3.5×↓
1.1%↑

3.6×↓
1.3%↑

C-10 (scra.)

C-10 (tran.)

C-100 (scra.)

C-100 (tran.)

(b)

Figure 3.27: (a) Transfer VGG8/Res18 from CIFAR-100 to CIFAR-10. (b)
Transfer Res18 from TinyImagenet to CIFAR-10 and 100.

subspace optimization shows low sensitivity on mapping quality and is able to

compensate for the suboptimality in singular vectors within a reasonable range.

Even with 60% mapped accuracy, singular value optimization has enough ca-

pability to recover the accuracy to ∼90%. Fourth, our subspace learning is ro-

bust to gradient noises caused by non-ideal Ĩ (MSEU≈MSEV≈0.013), which

shows that L2ight can tolerate reasonable suboptimality in the calibration

and mapping stages.

In-situ Transferability in the Restricted Subspace. Another important

question to answer is the transferability of subspace learning. After mapping,

we fix the inherited unitaries and adapt to different tasks by only training the

singular values. Figure 3.27 shows that the inherited bases span a good design

space with enough transferability. The in-situ subspace transfer learning shows

1-2% higher final accuracy. Also, it uses 3∼5× fewer steps to obtain the same

203

accuracy as training from scratch. Hence, our proposed L2ight finds a highly

trainable design point while the learnability is still mostly maintained.

3.4.10 Summary

In this work, we propose the first scalable and efficient on-chip learn-

ing framework L2ight for emerging optical neural networks. Our proposed

three-stage flow synergistically enables on-chip self-learning via automatic cir-

cuit state calibration, parallel model mapping, and efficient subspace learn-

ing. To further improve learning efficiency, we explore multi-level sparsity,

including balanced feedback sampling, information-preserving column feature

sampling, and runtime-reduced data sampling. Extensive ablation studies and

comparison experiments show 4-order-of-magnitude scalability improvement

over prior on-chip training protocols and 30× efficiency boost compared with

previous sparse training methods. We open-source a PyTorch-centric ONN

library torchonn, based on which we release our on-chip learning framework

L2ight at link. In the future, we will go beyond current software simula-

tion and experimentally validate the effectiveness of L2ight on real photonic

neural chips.

204

https://github.com/JeremieMelo/pytorch-onn
https://github.com/JeremieMelo/L2ight

Chapter 4

AI-Assisted Intelligent Photonic Integrated
Circuit Design Automation

4.1 Introduction

With recent advances in integrated photonics technology, optical deep

learning represents a new paradigm in next-generation efficient artificial intel-

ligence (AI) [171, 170, 26]. An increasing number of co-design efforts have been

made to enable synergistic light-AI interaction. We see extensive developments

for photonic AI with rapidly evolving optical neural network (ONN) hardware

accelerator designs [171, 70, 227, 50, 131, 173, 52] and various circuit-algorithm

co-optimization methodologies [70, 74, 73, 184, 75, 80]. However, conventional

design flow is based on manual design, which requires many trials-and-errors

and extensive domain expertise, and lacks automation to explore the design

space, inevitably leading to unsatisfying design optimality.

An intelligent, fully-automated photonic IC design flow with customized

photonic structure is promising to achieve breakthroughs in design quality and

productivity. However, the field of AI for photonics and photonic design au-

tomation is still under-explored.

To close the virtuous cycle of photonics for AI and AI for photonics, in

205

the rest of this chapter, we introduce an AI-assisted ultra-fast Maxwell equa-

tion solving framework NeurOLight for photonic device simulation accelera-

tion in Section 4.2. Section 4.3 presents the first automatic differentiable pho-

tonic circuit topology search framework ADEPT that achieves beyond-human

design quality in integrated photonic tensor cores.

4.2 NeurOLight: A Physics-Agnostic Neural Operator
Enabling Parametric Photonic Device Simulation

When we move toward an advanced photonic circuit design automa-

tion flow, a natural question is whether AI can assist in the lower-level de-

vice simulation to speed up the forward performance evaluation process. AI-

assisted photonic device simulation is a critical step to closing the synergis-

tic loop of light-AI interaction. Besides using standard devices that already

have a compact transfer matrix [171, 70, 190], modern optical AI shows a

trend to exploit customized photonic structures for scalable optical comput-

ing [73, 184, 260, 212]. Unfortunately, because customized devices do not have

analytical transfer functions, understanding their behavior heavily relies on nu-

merical simulators [100] to solve Maxwell partial differential equations (PDEs)

This NeurOLight section is based on the following publication.

1. Jiaqi Gu, Zhengqi Gao, Chenghao Feng, Hanqing Zhu, Ray T. Chen, Duane S. Bon-
ing, and David Z. Pan, "NeurOLight: A Physics-Agnostic Neural Operator Enabling
Parametric Photonic Device Simulation," Conference on Neural Information Process-
ing Systems (NeurIPS), Dec. 2022.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

206

to obtain the optical field distribution. Even solving a single 2-dimensional (2-

D) simulation instance on a 5×20 µm2 region can cost nearly 4 s on 8 CPUs,

as shown in Figure 4.1(a), which significantly hinders scalable circuit-level sim-

ulation and optimization. Hence, our target is to propose a surrogate model

that learns the light propagation principle and efficiently approximates the

field solutions to new simulation instances while running orders-of-magnitude

faster than the numerical solver, as shown in Figure 4.1(c).

196

140

10-4

10-1

102

R
un

tim
e

(s
)

102 103
Domain Size ()

(a)

FDFD Simulator

Prior DNN

NeurOLight

Solve one
instance

Conditioned on
fixed parameters

Joint
Probability
Modeling

(b)

FDFD Simulator: Solve Maxwell PDE

Train Data

NeurOLight Framework

Solve one PDE instance Slow runtime (>10 s)

Parallel inference on parametric PDEs Fast runtime (<10 ms)

Physics-Agnostic Learning

(c)

Figure 4.1: (a) Compare FDFD simulation and our NeurOLight framework.
(b) Different methods cover different solution spaces. (c) NeurOLight (1
Quadro RTX 6000 GPU) runs 140×-200× faster than the FDFD simulator
(8-core i7-9700 CPUs) across different domain sizes (50 nm grid step).

207

Most prior work still uses conventional NNs to predict several key prop-

erties based on a few design variables [186, 199], which is an ad-hoc function

approximator without learning the light propagation property. Several works

attempt to leverage physics-informed NNs (PINNs) [193, 19, 126] with physics-

augmented residual loss to predict electromagnetic field solutions. However,

previous methods have three major limitations. First, as illustrated in Fig-

ure 4.1(b), they only model the field distribution conditioned on pre-defined

solving domains, input sources, and frequency. In other words, their models

only learn the solution of a certain PDE instance with fixed parameters. Sec-

ond, they all belong to the category of PINNs [158] that require an explicit

description of the PDE as well as strict initial/boundary conditions. Con-

structing complicated Maxwell equation-based residual loss is no easier than

re-implementing a numerical solver [135, 122, 123]. Third, their CNN-based

models show inadequate modeling capacity with too small receptive fields to

learn important light propagation, scattering, and interference effects.

To learn a family of parametric Maxwell PDEs that models the joint

probability of different design variables as shown in Figure 4.1(b), we propose

a physics-agnostic light field prediction framework NeurOLight that consists

of a joint PDE encoder and an efficient cross-shaped neural operator backbone.

The main contributions of the work are as follows:

• For the first time, an AI-based photonic device simulation framework is

proposed to learn a family of parametric Maxwell PDEs for ultra-fast optical

field prediction.

208

• We propose a novel joint PDE encoder for compact PDE representation and

an efficient cross-shaped Fourier neural operator backbone for end-to-end

optical field prediction, over 2-order-of-magnitude faster than numerical

simulators.

• We propose a superposition-based mixup technique that dynamically boosts

the data efficiency and generalization during the training of NeurOLight.

• On different photonic device simulation benchmarks, our NeurOLight

achieves the best prediction fidelity, generalizability, and transferability, out-

performing UNet and state-of-the-art (SoTA) Fourier neural operators by

an average of 53.8% lower prediction error with 44.2% fewer parameters.

• To our best knowledge, this is the first AI-based framework that can learn

the terahertz light propagation inside photonic devices that generalizes to

different domains, permittivities, input sources, and frequencies. We open-

source our NeurOLight framework at link.

4.2.1 Preliminaries

Optical field simulation with machine learning. Finite difference fre-

quency domain (FDFD) simulation is a widely adopted method to analyze

silicon-photonic devices. Numerical simulators are used to solve frequency-

domain Maxwell PDEs to obtain electromagnetic field distributions of an

optical component with terahertz incident light sources. To accelerate this

time-consuming process, NNs have been utilized as surrogate models for fast

209

https://github.com/JeremieMelo/NeurOLight

optical simulation approximation. A multi-layer perceptron was used to map

the design variables to a scalar performance metric of a power splitter [186].

NNs were also utilized to predict intermediate values to accelerate the conver-

gence of the numerical solver [199]. MaxwellNet [126] was proposed to train

a UNet with physics-informed loss to predict the scattered field based on the

material permittivity of the free-space lens. WaveYNet [19] also adopted a

2-D UNet as the model trained with both data-driven supervision loss and

Maxwell-equation-based physics-augmented loss to predict the optical field of

silicon meta-lens. However, prior NN-based methods require explicit physics

knowledge of the Maxwell PDEs and only learn a small field solution space

conditioned on fixed parameters.

Learning PDEs via neural operators. Recently, neural operators have

been proposed as new NN models that learn a family of parametric PDEs in

the infinite-dimensional function space in a mesh-free and purely data-driven

fashion. The Fourier neural operator (FNO) [123] approximates the nonlinear

mapping from PDE observations to solutions through Fourier-domain kernel

integral operations, achieving record-breaking performance and efficiency on

a wide range of challenging applications. Several variants have been proposed

to improve the performance and efficiency of the original FNO models, e.g.,

Factorized FNO [198], U-FNO [213], and multiwavelet-based neural opera-

tor [78].

210

4.2.2 Proposed Optical Simulation Framework NeurOLight

4.2.2.1 Understanding Optical Simulation for Photonic Devices

Waveguides can confine the incident laser beam and allow the optical

signals to propagate and interfere with each other. Various optical compo-

nents, e.g., couplers, shifters, and multi-mode interference (MMI) devices [31],

can create phase shifts, magnitude modulation, and interference, especially

useful for optical communication and neuromorphic computing. Analyzing

how light wave propagates through those components are critical to device

optimization and photonic integrated circuit design. Given a linear isotropic

optical component, we will shine a time-harmonic continuous-wave light beam

on its input ports and analyze the steady-state electromagnetic field distribu-

tions E = x̂Ex + ŷEy + ẑEz and H = x̂Hx + ŷHy + ẑHz in it, each of which

includes horizontal (x), vertical (y), and longitudinal (z) components. We can

solve the steady-state optical field E(r) and H(r) from the frequency-domain

curl-of-curl Maxwell PDE under absorptive boundary conditions [100] (details

in Appendix .3.1),(
(µ−1

0 ∇×∇×)− ω2ϵ0ϵr(r)
)
E(r) = jωJe(r),(

∇× (ϵ−1
r (r)∇×)− ω2µ0ϵ0

)
H(r) = jωJm(r)

(4.1)

where ∇× is the curl operator of a vector function, µ0 is the vacuum magnetic

permeability, ϵ0 and ϵr are the vacuum and relative electric permittivity, and

Jm and Je are the magnetic and electric current sources. FDFD simulation

discretizes the continuous domain into an M × N mesh grid and solves the

above linear equation AX = b to obtain the fields. Detailed forms of A and

211

b can be found in [100]. Solving for these optical fields exactly with a sparse

matrix A ∈ CMN×MN is prohibitively expensive and not scalable to large

photonic structures. A fast surrogate model that predicts optical fields with

high fidelity is of tremendous interest.

4.2.2.2 The proposed NeurOLight Framework

PDE
Encoder

(2) Permittivity Masked Fields

(1) Unified Domain

(3) Frequency

Wave Prior

NeurOLight

Block

Recovered Fields

Stem Head

(4) Source

NeurOLight Backbone

Figure 4.2: NeurOLight framework for optical field simulation. Real part is
plotted for complex fields.

As shown in Figure 4.2, our NeurOLight framework models the op-

tical field simulation problem as an infinite-dimensional-space mapping from

Maxwell PDE observations A ∈ CΩ×da to the optical field solution U ∈ CΩ×du .

Here, Ω is the continuous 2-D physical solving domain, Ω = (lx, lz), typically

in units of micrometers (µm), where the photonic device-of-interest can be

tightly located. A and U take values with da and du dimensions, respectively.

To learn the ground truth nonlinear mapping Ψ∗ : A → U, we construct

NeurOLight with a PDE encoder E that produces compact PDE represen-

tations, followed by an efficient neural operator-based approximator Ψθ that

212

21 𝜇𝑚 (420 px)

7 𝜇𝑚
(140 px)

22 𝜇𝑚 (440 px)

5 𝜇𝑚
(100 px)

26 𝜇𝑚 (520 px)

4.5 𝜇𝑚
(90 px)

18 𝜇𝑚 (360 px)

6 𝜇𝑚
(120 px)

Scale-Adaptive Domain Discretization

𝑁 = 384 px

𝑀
=

 8
0

 p
x

(1)
(2)

(3) (4)

1 : Δ𝑙𝑧, Δ𝑙𝑥 = 54.7, 87.5 (𝑛𝑚)
2 : Δ𝑙𝑧, Δ𝑙𝑥 = 57.3, 62.5 (𝑛𝑚)
3 : Δ𝑙𝑧, Δ𝑙𝑥 = 46.9, 75.0 (𝑛𝑚)
4 : Δ𝑙𝑧, Δ𝑙𝑥 = 67.7, 56.3 (𝑛𝑚)

1) − (4 : Δ𝑙𝑧, Δ𝑙𝑥 = 50, 50 (𝑛𝑚)

Figure 4.3: Scale-adaptive domain discretization enables generalization to dif-
ferent solving domain dimensions and efficient batched processing.

minimizes the empirical error on discrete PDE observable samples a ∼ A,

θ∗ = min
θ

Ea∼A

[
L
(
Ψθ(E(a)),Ψ

∗(a)
)]
. (4.2)

4.2.2.3 Scale-Adaptive Domain Discretization: Ω→ Ω̃

To generalize to PDEs in different physical domains and support batched

parallel inference, we adopt an M×N discrete unified domain Ω̃ = (M,N,∆lx,∆lz)

with an adaptive mesh granularity, i.e., with grid steps ∆lx = lx/M and

∆lz = lz/N . As shown in Figure. 4.3, multiple photonic devices with dif-

ferent physical dimensions are normalized to the same Ω̃. Their original phys-

ical dimensions can be elegantly encoded into the re-calculated mesh gran-

ularities. This unified discrete domain gives NeurOLight the flexibility to

handle parallel inference on different physical domain dimensions, unlike prior

work [126, 19] that requires time-consuming model retraining once the physical

213

Wave propagation
behavior changes

with different

Wave Prior from PDE Encoder

Diverse high-order
wave patterns

learnt by stem

...

Fast wave in
SiO2 ()

Slow wave in
Si ()

Figure 4.4: Wave prior as joint PDE representations.

domain changes.

4.2.2.4 Joint PDE Representation: A→ A†

After we define a unified solving domain, we need to construct effective

PDE representations that describe the raw observations A = (Ω̃, ϵr, ω,J). The

relative permittivity distribution can be simply represented by ϵr ∈ CM×N .

However, how to compactly encode other parameters, i.e., (Ω̃, ω,J), remains a

non-trivial challenge. Let us first consider what makes a good representation.

First, it needs to be compatible with the model input, i.e., it can be fused with

the 2-D image representation in a compact way. Second, it is preferred to reveal

the physical essence of the parameters and inject useful prior knowledge that

helps model generalization. Based on the above considerations, we propose a

PDE encoder E : A → A† that converts the raw observations to a joint PDE

representation A† = (ϵr,H
J
y ,Px,Pz).

Encoding (Ω̃, ϵr, ω) via wave prior. The intuition behind the wave prior

214

design is that the vacuum angular frequency ω = 2πc
λ

and electric permittiv-

ity ϵr together decide the physical light wavelength inside the material, i.e.,

λ′ = λ/
√
ϵr. The mesh granularity determines how many pixels can depict a

wave period along both directions, i.e., (λ′/∆lx, λ
′/∆lz). Therefore, as shown

in Figure 4.4, we construct artificial wave patterns, named wave prior, as

Pz = ej
2π

√
ϵr

λ
1zT∆lz and Px = ej

2π
√
ϵr

λ
x1T∆lx , where x = (0, 1, · · · ,M − 1) and

z = (0, 1, · · · , N − 1). The wave prior jointly translates the (Ω̃, ϵr, ω) pair

to a unified representation with strong prior knowledge, significantly reduc-

ing the learning difficulty on overly-abstract raw observations. We note that

the NeurOLight stem learns complex combinations of the wave prior and

generates diverse high-order wave patterns for later feature transformation.

Masked

Eigen Mode of Light Source

Masked Light Source Field

Masked

Figure 4.5: Masked light
source modeling.

Masked image modeling-inspired light

source (J) encoding. In the optical simula-

tion, light source J will be injected by shining

light on the input waveguides of the photonic

devices as stimuli to the system. J will have

a vacuum angular frequency ω and a polariza-

tion mode. For example, in the transverse mag-

netic (TM) mode, we have Hx = Hz = 0. Thus

we focus on the prediction of Hy. However, as

shown in Figure 4.5, J is a combination of mul-

tiple length-w 1-D vectors, where w is the input

port width, placed at the input waveguides, which is hard to be encoded in

215

the image prediction flow. Therefore, we borrow the idea of masked image

modeling [18] to light source encoding. In the source representation HJ , we

only maintain the fields in the input waveguides before entering the key region

of the device, which is easy to obtain and irrelevant to the structure it enters

into, and mask out all the fields after. In this way, the field prediction task

translates to a masked field restoration task conditioned on the input light

source as a hint.

4.2.2.5 Efficient NeurOLight Model Architecture: Ψθ

Convolutional stem. The proposed NeurOLight architecture starts with

a convolutional stem S : a†(r) → v0(r), ∀r ∈ Ω that encodes each complex-

valued observation sample a†(r) ∈ C4×M×N to a real-valued representation

v0(r) ∈ RC×M×N . Lightweight blueprint convolutions [79] are used to perform

local wave pattern transformation with a low hardware cost.

Cross-shaped NeurOLight block. In the projected C-dimensional space,

we place K cascaded NeurOLight blocks to gradually restore the complex

light field in the frequency domain as v0(r) → v1(r) → · · · → vK(r). Each

NeurOLight block is formulated as

vk+1(r) : = FFN
(
(Kvk)(r)

)
+ vk, ∀r ∈ Ω;

(Kvk)(r) =

∫
Ω

κ(r1, r2)vk(r2)dvk(r2),∀r1 ∈ Ω,
(4.3)

where K is a learnable kernel integral transform, and FFN(·) is a feedforward

network. When the kernel satisfies κ(r1, r2) = κ(r1 − r2), the above integral

kernel operator is equivalent to a spatial-domain 2-D convolution, which can be

216

FF
T

IF
FT

FF
T

IF
FT

+

Conv1x1 DWConv3x3Linear BN GELU

Horizontal-FNO-1d FFN

Figure 4.6: NeurOLight backbone model design.

efficiently computed by using Fourier transform F(·) [123]. A clear downside of

the original 2-D FNO is the huge parameter cost, i.e., F(κ)(r) ∈ Ckv×kh×C×C ,

and the resultant severe overfitting issues. To improve the model efficiency

and generalization simultaneously, we introduce a cross-shaped Fourier neural

operator, shown in Figure 4.6. The input feature is first bi-partitioned along

the channel dimension into two chunks vk(r) = [vhk (r); v
v
k(r)], representing

horizontal and vertical patterns, and 1-D FNO is applied to both directions,

(Khvhk)(r) = F−1
z

(
Fz(κ

h) · Fz(v
h
k)
)
(r) = F−1

z

(
Rh(z) · Fz(v

h
k (r))

)
, ∀z ∈ Ωz, ∀r ∈ Ω,

(Kvvvk)(r) = F−1
x

(
Fx(κ

v) · Fx(v
v
k)
)
(r) = F−1

x

(
Rv(x) · Fx(v

v
k(r))

)
,∀x ∈ Ωx,∀r ∈ Ω,

(Kvk)(r) = [(Khvhk)(r); (K
vvvk)(r)].

(4.4)

We parametrize the Fourier kernels as lightweight complex-valued tensors

Rh(z) ∈ Ckz×C
2
×C

2 and Rv(x) ∈ Ckx×C
2
×C

2 . These orthogonal 1-D kernel op-

erations intrinsically perform spatial and channel-wise feature aggregation in

an interleaved way that are able to provide global receptive fields to achieve

long-distance modeling. Compared with kvkhC
2 parameters in the 2-D FNO,

our cross-shaped NeurOLight block only has (kv+kh+8s)C2

4
parameters.

217

To increase nonlinearity and enhance local information interaction, we

append an FFN block after the cross-shaped FNO. Inspired by the MixFFN

designs in SoTA vision transformers [224], our FFN expands the channels by s

times, performs local information aggregation via 3×3 depth-wise convolution

(DWConv), activates using the GELU function, and projects it back to C

channels.

Projection head. In the end, two point-wise convolutional layers are used

to project vK(r) to the light field space u(r) = Q(vK(r)). A dropout layer is

inserted to mitigate overfitting issues.

Loss function. Even with normalized light source power, optical fields tend

to have distinct statistics. To balance the optimization effort among different

fields, we adopt the normalized mean absolute error (N-MAE) as the objective

L
(
Ψθ(E(a)),Ψ

∗(a)
)
= (∥Ψθ(E(a))−Ψ∗(a)∥1)/∥Ψ∗(a)∥1.

4.2.2.6 Superposition-based Mixup for Better Data Efficiency and
Generalization

The PDE observations A can cover a huge design space. Hence, the

data efficiency and generalization of pure data-driven models raise a concern.

Simply drawing large numbers of random training examples with all possible

light sources has an intractable data acquisition cost. Standard augmentation

techniques are effective in improving data efficiency and generalization on tasks

with natural images ; however, their direct application is not compatible with

PDE simulation. Since Ψ∗(ai) is a highly nonlinear function of ai and closely

218

Single-Source Training Examples (same)

Augmented Training Examples with

Superposition-based Mixup

Sources Target Fields

Figure 4.7: Data augmentation with superposition-based mixup. Only the real
part is plotted for each field.

related to the boundary conditions, simultaneously augmenting ϵr, Ω, ω, and

H, e.g., via cropping, distortion, or resizing, leads to invalid field solutions.

Interestingly, we notice that the photonic system satisfies the superpo-

sition property w.r.t. the light source,

H̃ = Ψ∗(H̃J) = Ψ∗(

|J|∑
i=1

γiH
Ji) =

|J|∑
i=1

γiΨ
∗(HJi). (4.5)

Based on this, we only involve single-input simulation data in the training

set and dynamically mix multiple (|J|) input sources via Superposition-based

Mixup, as shown in Figure 4.7,(
H̃J1 · · · H̃J|J|

H̃1 · · · H̃|J|

)T

= Γ

(
HJ1 · · · HJ|J|

H1 · · · H|J|

)T

,

Γ ∈ C|J|×|J|, ∥Γj∥2 = 1, ϕ(γj1) = 0,∀j ∈ [|J|].

(4.6)

219

At each iteration, we randomly generate the mixup coefficient matrix Γ and

make it have a unit row-wise ℓ2-norm for light field power normalization. The

global phase of the complex-valued optical field is normalized by forcing the

first input port always to have a phase that equals 0. In this way, NeurOLight

learns how multiple incident light sources interfere with one another. Once

NeurOLight can generalize to arbitrary light sources, multi-source simulation

only needs an efficient one-shot inference with superposed source fields instead

of explicitly accumulating |J| single-source inference results.

4.2.3 Experimental Results

4.2.3.1 Experiment Setup

Datasets. We focus on widely applied multi-mode interference (MMI)

photonic devices. We select MMIs with rectangular tunable control pads (Tun-

able MMI). The permittivity of the tuning region can be programmed by ex-

ternal signals, so this family of devices exemplifies photonic structures with

reconfigurable transmissions [116]. We also evaluate MMIs with rectangular

etched cavities (Etched MMI) [186], which exemplifies another popular cate-

gory of passive sub-wavelength photonic devices with fixed yet highly discrete

permittivity distributions. We use an open-source CPU-based 2-D FDFD sim-

ulator angler [100] to simulate optical fields for randomly generated MMIs as

our dataset. Details on dataset generation are in Appendix .3.2.

220

https://github.com/fancompute/angler

Table 4.1: Comparison of parameter count, train error, and test error on two
benchmarks among four different models.

Benchmarks Model #Params (M) ↓ Train Err ↓ Test Err ↓

UNet [126, 19] 3.47 0.776 0.801
FNO-2d [123] 3.29 0.231 0.244
F-FNO [198] 3.16 0.272 0.292Tunable MMI

NeurOLight 1.58 0.145 0.122

UNet [126, 19] 3.47 0.779 0.792
FNO-2d [123] 3.29 0.601 0.648
F-FNO [198] 3.16 0.411 0.525Etched MMI

NeurOLight 2.11 0.376 0.387

Average Improvement -44.2% -49.1% -53.8%

4.2.3.2 Main Results

In Table 4.1, we compare four models: (1) UNet [126, 19], (2) a 5-

layer FNO-2d [123], (3) a 12-layer factorized FNO (F-FNO) [198], and (4)

our NeurOLight. Detailed training settings and model architectures can be

found in Appendix .3.3 and Appendix .3.4, respectively. On these benchmarks,

NeurOLight outperforms UNet and prior SoTA FNO variants by 53.8%

lower test error with 44.2% fewer parameters on average.

Results on Tunable MMI. On tunable MMI, NeurOLight achieves the

best prediction error with only half the parameter cost. Figure 4.8 visual-

izes the field prediction for one test MMI. UNet is significantly limited by its

small receptive field and lack of long-distance modeling capability, thus failing

to predict the full field even with the hint of wave prior. As representative

neural operators, FNO-2d and factorized FNO (F-FNO) manifest the superior

advantages of the Fourier-domain kernel integral operations, showing consid-

221

UNet

Wave Prior

FNO-2d

Wave Prior

NeurOLight

Wave Prior

F-FNO

Wave Prior

Figure 4.8: Visualization on one test tunable MMI. (∆lx = 83.1 nm,∆lz =
70.8 nm, λ = 1.54 µm).

erably lower prediction errors than their CNN counterparts. However, given

the parameter budget (∼3 M), the 5-layer FNO-2d only has 10 modes in the x-

direction and 32 modes in the z-direction, which may not be enough to extract

high-frequency waves. The 12-layer F-FNO adopts factorized 1-D Fourier ker-

nel to save parameters; however, its modeling capability is limited by the lack

of local feature extractors. Our NeurOLight blocks benefit from the global

view of the cross-shaped 1-D kernel and local feature aggregation from convo-

lutional FFN blocks. In the training curves in Figure 4.10(a), NeurOLight

achieves the fastest convergence and best generalization among all models.

Results on Etched MMI. Compared with tunable MMIs, predicting the

field in etched MMIs, even with 2× more training examples, is a much harder

task given the complicated scattering at the cavity-silicon interface and the

considerably larger and highly discrete design space, shown in Figure 4.9.

Hence, we increase the model capacity of NeurOLight by using 16 layers.

Among all prediction models, NeurOLight achieves the best results with 42%

lower error while still saving 36% parameters on average.

222

UNet

Wave Prior

FNO-2d

Wave Prior

NeurOLight

Wave Prior

F-FNO

Wave Prior

Figure 4.9: Visualization on one test etched MMI. (∆lx = 91.3 nm,∆lz =
89.1 nm, λ = 1.55 µm).

4.2.3.3 Ablation Studies

PDE Encoding. In Figure 4.10(b), we extensively compare different com-

binations of PDE encoding methods. The first two methods only model the

distribution over ϵr conditioned on fixed wavelength and domain sizes like prior

work [126, 19], which fail to generalize to examples in larger design space. With

raw PDE parameters (ϵr, λ, Ω̃), the model finds it difficult to learn a general-

izable representation, thus showing large errors on the test dataset. The last

three combinations validate that permittivity and our wave prior are compact

and effective encodings in our joint PDE representation method, while extra

raw wavelength and domain information are redundant and even harmful.

0 50 100 150 200
Epoch

0.1

1

0.2

0.5

Lo
g

Te
st

 N
-M

AE

NeurOLight
UNet
FNO-2d

F-FNO
+Wave Prior

(a)

Wave Prior

Wave Prior

Wave Prior

Test

N-MAE

0.122

0.165

0.176

0.220

0.152

0.149

(b)

10 40 100 130 160
#Mode-h ()
70 19010

20

30

40

#M
od

e-
v

(
)

0.8

0.9

1.0

(c)

Figure 4.10: (a) Test N-MAE curves of four models. (b) Our PDE encoder
achieves the lowest error. (c) Normalized test error contour of a 8-layer
NeurOLight with different # of Fourier modes.

223

Table 4.2: Ablation on proposed techniques. Each entry changes one technique
independently. Runtime is averaged over multiple runs on 1 NVIDIA Quadro
RTX 6000 GPU.

Variants #Params
(M)↓ Train Err ↓ Test Err ↓ Runtime

(ms) ↓

NeurOLight 1.58 0.145 0.122 12.1

ConvStem → Lifting 1.58 0.156 0.134 11.9
Extra Parallel Conv Path 1.64 0.149 0.129 14.5

FFN → BN-GELU 1.37 0.469 0.446 6.3
Remove DWConv in FFN 1.57 0.164 0.144 10.6
Extra GELU After FNO 1.58 0.164 0.148 12.4

Remove DropPath 1.58 0.131 0.136 12.1

Fourier Modes. As shown in Figure 4.10(c), we perform a fine-grained

exploration in the Fourier mode space to find the most suitable configuration.

Unlike the flow prediction tasks evaluated in FNO [123] that only require a

few modes, using inadequate Fourier modes fails to learn the terahertz high-

frequency optical fields in the photonic device simulation task. However, using

all Fourier series is not necessary and makes the model prone to overfitting

issues. (kh, kv)=(70, 40) is the best setting that balances expressiveness and

efficiency in our NeurOLight.

Cross-Shaped NeurOLight Block. In Table 4.2, we independently change

one technique in the full NeurOLight model to verify each individual con-

tribution. Our proposed essential techniques synergistically boost the mod-

eling capacity and generalization. Compared to the linear lifting in FNO-2d

which only performs point-wise projection, our lightweight convolution stem

can extract complex high-order wave patterns with negligible runtime over-

224

head. Similar to U-FNO [213], we append an additional parallel convolution

path alongside the cross-shaped FNO block; however, the extra 20% runtime

penalty does not pay off. The proposed convolutional FFN significantly im-

proves the nonlinearity and local feature extraction ability of NeurOLight.

Changing it to a simple BatchNorm-GELU causes significant degradation. Dif-

ferent from the MLP-based FFN in F-FNO [198], our extra depthwise CONV

is critical to local feature extraction and can reduce the test error by 16%.

Note that an extra GELU after the FNO block will distort the feature in the

low-dimensional space and have a negative impact on the performance [168].

Besides the dropout in the head, stochastic network depth [96] in the residual

NeurOLight block is also effective in mitigating overfitting.

4.2.3.4 Discussion

Superposition-based Mixup. As shown in Table 4.3, without augmenta-

tion, NeurOLight only sees single-source training examples, thus failing to

generalize when multiple sources are fused as a unified input source for fast one-

shot prediction, named multi-source inference mode. A simple work-around

would be to perform single-source prediction on |J| ports and superpose the

resultant |J| fields, named single-source inference mode. When training on a

large enough training set, this method indeed works. However, it quickly de-

teriorates as the training set reduces with a |J| times higher runtime cost for a

|J|-port device. With our dynamic superposition-based mixup, NeurOLight

works well both in single-source and multi-source inference modes with supe-

225

Table 4.3: Test N-MAE of an 8-layer NeurOLight with different number of
training examples. Multi-source inference mode has similar performance as
the single-source method but shows 3× faster runtime on 3×3 MMIs.

#Train Examples (K)Train
Augmentation

Inference
Mode 1.4 4.1 6.9 9.7 12.4

Runtime
(ms)

Single-Source 0.346 0.257 0.202 0.198 0.194 23.8None Multi-Source 0.892 0.882 0.880 0.865 0.873 8.3

Single-Source 0.229 0.205 0.204 0.200 0.199 23.8Superposition
Mixup Multi-Source 0.230 0.208 0.206 0.202 0.202 8.3

𝜆 covered in training set

±𝜎

Generalize to

unseen frequency

1.53 1.54 1.55 1.56
0.08

0.10

0.12

0.14

T
e
s
t
N

-M
A

E

Wavelength 𝜆 (𝜇𝑚)

FDFD: >1 min v.s. NeurOLight: <150 ms

Figure 4.11: NeurOLight can generalize to unseen devices and wavelengths.

rior generalizability even with only 10% training data.

Spectrum Analysis. Spectroscopy is an important approach to under-

standing the broadband response of a photonic device. A traditional FDFD

simulator has to sweep the spectrum with multiple simulations. In contrast,

NeurOLight models the joint probability over wavelengths, and thus only

needs to perform parallel inference with different ω = 2π
λ

values at one shot.

Figure 4.11 demonstrates that, though NeurOLight is only trained with five

selected wavelengths, it can generalize to unseen devices with unseen wave-

226

lengths. Sweeping in the standard C-band (1550 nm-1565 nm) with a 2 nm

granularity, NeurOLight can finish within 150 ms, achieving 450× speedup

over the FDFD simulator.

Device Adaptation. We evaluate the transferability of NeurOLight via

device adaptation. In Figure 4.12, we transfer NeurOLight trained on 3-port

MMIs to larger MMIs with 4 and 5 ports. Directly predicting new devices

shows unsatisfying test error out of distribution (OOD). We adapt the model

with 20-epoch fast linear probing and 30-epoch finetuning [113] on 3.7 K 4-port

MMI examples and 4.6 K 5-port MMI examples. The model quickly transfers

to new photonic devices with good prediction fidelity.

3x3 MMI 4x4 MMI
(1) Direct Test Err OOD: 0.399

(2) Linear
Probing (3) Finetune

Test Err: 0.130

Epoch

Te
st

 N
-M

AE

Epoch

3x3 MMI 5x5 MMI
(1) Direct Test Err OOD: 0.773

Te
st

 N
-M

AE

5x5 MMI: =1.55

=84.0 nm 113.1 nm

4x4 MMI: =1.53

=82.3 nm 81.9 nm

NeurOLight

Simulator

Error

(3) Finetune

Test Err: 0.171

(2) Linear
Probing

Figure 4.12: Device adaptation from 3-port to 4-/ 5-port MMI via linear
probing and finetuning.

4.2.4 Summary

In this work, for the first time, a physics-agnostic neural operator,

named NeurOLight, is proposed for ultra-fast parametric photonic device

simulation. We propose a joint PDE encoder with wave prior and masked

source modeling for compact PDE representation. Our lightweight cross-

shaped NeurOLight backbone design achieves a superior balance between

227

modeling capability and parameter efficiency. In addition, our novel superposition-

based mixup technique significantly boosts the data efficiency and model gen-

eralizability. Experiments show that NeurOLight outperforms prior DNN

models with 53.8% better prediction fidelity and 44.2% less parameter cost,

serving as an over 100× faster surrogate model to the numerical solvers in

photonic device simulation. Currently, our model focuses on device-level sim-

ulation. As a future direction, we look forward to exploring the circuit-level

simulation and utilizing our model to streamline the optimization loop for

efficient AI-assisted optical circuit design automation.

4.3 ADEPT: Automatic Differentiable Design of Pho-
tonic Tensor Cores

After we have a fast device simulation oracle, we need to further en-

able the upper-level circuit design/optimization automation. Previous pho-

tonic tensor cores (PTCs) are all hand-designed based on matrix decomposi-

tion theory [171], which leaves a large design space unexplored and lacks the

adaptability to meet various device specifications and hardware constraints.

Specifically, the MZI-based PTC [171] is universal at the cost of high area

This ADEPT section is based on the following publication.

1. Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Zixuan Jiang, Mingjie Liu, Shuhan Zhang,
Ray T. Chen, and David Z. Pan, "ADEPT: Automatic Differentiable DEsign of
Photonic Tensor Cores," ACM/IEEE Design Automation Conference (DAC), Jul.
2022.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

228

cost and low compute density. The FFT-based PTC [70, 71, 52] significantly

reduces the usage of couplers and phase shifters. However, its area efficiency

may not scale well with different PTC sizes and foundry process design kits

(PDKs). As the PTC size scales up, the butterfly mesh in the FFT-based PTC

introduces quadratically many waveguide crossings. If the foundry does not

provide compact crossings, e.g., AIM photonics [195], those routing-related

crossings will take up most of the circuit area. Besides, the butterfly mesh

only has a logarithmic depth. Thus it restricts the matrix representability,

which may lead to inadequate ONN learnability as PTC scales up.

Based on the above analysis, we observe strong demand for an auto-

matic, efficient, and flexible PTC design methodology. Inspired by the success

of neural architecture search (NAS) [128, 220] in the machine learning com-

munity, an interesting question to be answered is whether we can jump out of

the conventional manual design paradigm and use AI to "nurture" photonic

neurocomputing with higher flexibility. However, PTC design search encoun-

ters the following unique and difficult challenges. First, unlike NAS, where

the NN architecture can be re-designed in software for application/platform

adaptation at a relatively low cost, the photonic circuits need to be carefully

designed before chip manufacturing and cannot be easily changed given the

high cost of chip tape-out. Second, the PTC design can only be searched on

a proxy NN model and learning task, but it has to be expressive and gen-

eral enough to be adapted to various AI workloads after chip manufacturing.

Third, the PTC circuit topology has an extremely large and highly discrete

229

search space, which casts significant optimization difficulties that prevent the

direct application of off-the-shelf NAS algorithms to this unique problem.

To handle those challenges, in this work, we propose the first auto-

matic differentiable search framework for photonic tensor core topology de-

sign, which we refer to as ADEPT. Our target is, given certain footprint con-

straints, we can efficiently search for a photonic circuit topology with good

matrix representability, compact footprint, and high noise robustness. ADEPT

enables differentiable PTC topology exploration via the following approaches:

(1) we construct a probabilistic photonic SuperMesh to enable differentiable

optimization in a huge and highly discrete PTC search space; (2) we adopt

reparametrization and augmented Lagrangian method to learn waveguide con-

nections; (3) binarization-aware training is employed to learn the location

to place optical couplers; (4) ADEPT integrates the device specification from

foundry PDKs into the SuperMesh training flow and optimizes PTC designs

under various footprint constraints in a fully differentiable approach.

Our main contributions are as follows,

• In this work, for the first time, we automate the photonic tensor core

design process and propose a differentiable framework to efficiently explore

the PTC design space.

• To enable PTC topology search in a differentiable way, we introduce proba-

bilistic photonic SuperMesh to search the PTC depth, an augmented La-

grangian method to learn waveguide connections, and binarization-aware

230

training to learn the coupler placement.

• The proposed ADEPT flow can adaptively generate various PTC designs

based on different foundry PDKs and circuit footprint constraints. Exper-

iments on various NN models and datasets show that the searched PTC

topology outperforms prior hand-crafted structures with higher flexibility,

competitive expressiveness, 2×-30× smaller footprint, and superior noise

robustness.

4.3.1 Preliminaries

4.3.1.1 Photonic Computing Premitivies

To perform computing in optics, we construct photonic integrated cir-

cuits (PICs) by cascaded optical devices.

Phase shifter (PS). Phase shifters can manipulate the effective refractive

index of waveguides to produce a controlled phase shift ϕ on the propagating

light signal x, y = e−jϕx. Phase shifters are typically active devices that are

reprogrammable after PIC manufacturing.

Directional coupler (DC). 2-by-2 directional couplers (DC) can produce in-

terference between two coherent light signals, whose transfer matrix is T2×2,

where T11 = T22 = t and T12 = T21 =
√
1− t2j, and t ∈ [0, 1] is the transmis-

sion coefficient. Couplers are typically passive devices that are fixed after chip

fabrication.

Waveguide Crossing (CR). Given the 2-dimensional topology of the PIC,

signal routing requires waveguide crossings. Unlike electrical wires, silicon

231

waveguides allow independent light propagation through crossed waveguides.

Crossings of n waveguides can be described as an n × n permutation matrix.

In photonic tensor cores, crossings can enhance signal flow and are typically

not programmable after PIC fabrication.

Mach-Zehnder interferometer (MZI). MZI is a hand-designed structure

consisting of two cascaded couplers and two phase shifters. MZI can perform

arbitrary 2-D unitary projection, which is widely used to construct PTCs at

the cost of a large circuit footprint.

4.3.1.2 Programmable PTCs

PTCs are essential building blocks in photonic accelerators constructed

with passive and active optical devices. Current PTC topologies are hand-

designed and barely involve any automation. Various [171, 30] MZI meshes

were proposed to realize arbitrary N ×N unitary matrices using N(N − 1)/2

cascaded MZIs. Based on this, a weight matrix can be decomposed using SVD

and mapped onto MZI meshes. Besides this universal photonic mesh design, a

Fourier transform (FFT)-based PTC design [70, 71] was introduced to realize

restricted linear operations with a butterfly-style mesh topology. This design

utilizes basic optical components, i.e., PS, DC, and waveguide crossings CR

without large MZIs to reduce footprint.

PTC designs need to consider device specification in foundry PDKs to

honor circuit footprint constraints. Different foundries, e.g., AMF [2] and AIM

photonics [195], provide devices of considerably different sizes, which makes it

232

challenging to manually search for good PTC designs that fit the area budget.

This motivates us to provide an automatic solution for PDK-adaptive PTC

design.

4.3.1.3 Differentiable Neural Architecture Search

Differentiable neural architecture search (DNAS) is widely adopted

to automate the manual process of DNN architecture design with high ef-

ficiency. DNAS relaxes the discrete search space into continuous representa-

tion, such that the architecture can be optimized with gradient-based methods.

DARTS [128] enables DNAS by using a softmax function to relax the categori-

cal choice of candidate operations. FBNet [220] represents the search space by

a stochastic SuperNet and then applies DNAS to discover low-latency DNN

designs.

Recently, O-HAS [118] proposed an optical accelerator search frame-

work that can automatically generate the optimal accelerator architecture.

Different from our PTC circuit topology design, O-HAS focuses on searching

for a mapping strategy to implement DNN models with manually-designed

PTCs.

To the best of our knowledge, automated PTC design flow remains

unexplored. It will be promising to develop a flexible and efficient framework

to automatically search PTC topologies with high expressiveness, compact

footprint, and good noise robustness, adaptive to various PDKs and footprint

constraints.

233

4.3.2 Automatic Photonic Tensor Core Design Framework ADEPT

4.3.2.1 Problem Formulation

Our target is to use basic optical components, including DC, PS, and

CR, to design a photonic mesh with a controlled footprint that can construct

ONNs with high expressiveness, formulated as follows,

min
α∈A

L
(
W ∗α; Dval

)
, α = (BU , BV ,P,T)

s.t. W ∗ = argmin
W

L(Wα; Dtrn), Fmin ≤ F(α) ≤ Fmax,

Wα ∈ CM×N =
{
Wα

pq

}p=P,q=Q

p=1,q=1
=
{
Uα
pqΣpqV

α
pq

}p=P,q=Q

p=1,q=1
,

BU , BV ∈ [Bmin/2, Bmax/2],Wpq ∈ CK×K ,

P=(· · · ,Pb, · · · ,PBU+BV),T=(· · · ,Tb, · · · ,TBU+BV).

(4.7)

The weight matrix W in an ONN layer is partitioned into K×K sub-matrices.

Each sub-matrix is constructed by two unitaries Uα
pq and V α

pq and a diagonal

matrix Σpq. The layout topology α of two unitaries is the primary search

target, shared among all blocks.

4.3.2.2 Search Space Specification

Our search space focuses on the tensor core circuit topology, not layer

configurations like conventional NAS work. As illustrated in Fig. 4.13, we

define the following block-wise search space for the unitaries,

Uα
pq =

BU∏
b=1

PbTbR(Φ
b
pq), V α

pq =
BU+BV∏
b=BU+1

PbTbR(Φ
b
pq). (4.8)

Unitaries U and V consist of BU and BV blocks, respectively. For simplifica-

tion, we focus on U and refer to {BU , BV } as B thereafter.

234

Block 1 Block Bmax/2Block 2

or
1

1
1

1
1

1

Discrete

Continuous

Binarize STE
Discrete

0.1 0.80.1
0.7 0.2 0.1
0.1 0.30.6

Continuous

ALM Reparam.

Continuous

Discrete

or

Sample Gumbel

Min Depth Bmin/2
PS

Layer
DC

Layer
CR

Layer

Figure 4.13: Overview of the probabilistic photonic SuperMesh.

The first structure in the block is a column of K phase shifters, which

can be described by a diagonal matrix R(Φb
pq),

R(Φb
pq) = diag(e−jϕ1 , · · · , e−jϕK). (4.9)

The second structure in the block is a column of 2-by-2 directional

couplers T ’s placed from the sb-th waveguide, which can be described by a

block diagonal matrix Tb. We will only include 50:50 DCs in our design, i.e.,

t =
√
2/2. This coupler column enables information interaction between adja-

cent waveguides. Besides, cascading DC layers in an interleaved way naturally

allows more light signals to interfere with each other. Thus we have sb = 1 if

b is even and sb = 0 if b is odd, as shown in Fig. 4.13.

235

The last layer in the block is designed for pure waveguide routing.

This layer consists of a network of waveguide crossings, whose transfer matrix

belongs to the permutation matrix family,

Pb ∈{0, 1}K×K ,
∑
j

P
i,j
b =1 ∀i ∈ [K],

∑
i

P
i,j
b =1 ∀j ∈ [K]. (4.10)

The search space for P is extremely large since Bmax size-K permutations

contain total (K!)Bmax possible combinations.

In summary, one unitary photonic mesh contains B blocks, each in-

cluding a PS layer, a DC layer, and a CR layer. The topology α includes the

number of blocks BU and BV , the waveguide connections P in the permutation

layer, and the locations to put directional couplers described by T. The total

search space is O
(
(K ·K!/2)Bmax

)
.

4.3.2.3 Fully Differentiable SuperMesh Training

To solve the highly discrete PTC topology design problem in such an

enormous search space, we propose a differentiable SuperMesh training flow

ADEPT in Fig. 4.14.

The total optimization variables in the SuperMesh training contain

(1) diagonal matrix Σ, (2) phases Φ in the PS layer, (3) directional couplers

T in the DC layer, (4) permutation matrices P of the CR layer, (5) the number

of blocks B. Jointly optimizing all those continuous and discrete variables is

highly ill-conditioned, leading to prohibitive optimization difficulty. We sepa-

rate them into two sets: (1) Σ, Φ, T, and P belong to the SuperMesh weights,

236

Trainable
Frozen

 Warmup

Objective

 Search

update weights
update arch params

SPL

Variation-aware

ONN Training

ADEPT: Training

weights
arch params

Figure 4.14: The proposed photonic SuperMesh training flow ADEPT, fol-
lowed by variation-aware ONN training.

and (2) B belong to the architecture parameter group. The entire ADEPT

flow contains two stage, shown in Fig. 4.14. The first SuperMesh Warmup

stage only optimizes weights for initial exploration. The second SuperMesh

Search stage optimizes two parameter groups alternately. We periodically en-

ter the SuperMesh weight training phase to optimize Σ, Φ, T, and P and

switch to the architecture parameter training phase to search B. After ADEPT

SuperMesh training, we apply variation-aware training to target ONN mod-

els with the searched PTC topology. Now we introduce how to optimize those

variables one by one.

Optimize SuperMesh Depth B. The depth of SuperMesh can be relaxed

by constructing a stochastic super block. During the inference, the b-th block

Ub is either sampled and executed (Ub,1) or skipped as an identity projection

237

(Ub,2) with the probability of

Pθb

(
Ub = Ub,i

)
= eθb,i

/∑
i

eθb,i . (4.11)

The probability distribution of block-b is parametrized by the sampling coef-

ficient θb. The forward propagation of the b-th block is,

xb+1 =

2∑
i=1

mb,iUb,ixb, Ub,1 = I, Ub,2 = PbTbRb, (4.12)

where the variable mb,i determines the probability to select the b-th block.

Therefore, instead of searching B in the discrete space, the problem can be

relaxed to the optimization of the probability Pθ. Gumbel-Softmax (GS)

trick [220] is employed as follows,

mb,i = GumbelSoftmax(θb,i|θb) = e(θb,i+gb,i)/τ
/∑

i

e(θb,i+gb,i)/τ . (4.13)

Softmax achieves continuous relaxation, and the Gumbel noise gb,i introduces

stochasticity for better exploration controlled by the temperature τ . Note

that the depth B has a range of [Bmin/2, Bmax/2]. Hence, the SuperMesh U

consists of (Bmax/2) super blocks to upper-bound the search space. Meanwhile,

the last (Bmin/2) blocks are always sampled with 100% certainty to lower-

bound the search space, i.e., mb,2 = 1,∀b > Bmax/2−Bmin/2.

Optimize Permutation Matrices P. Permutations are hard to search di-

rectly due to the factorial and highly discrete search space. The discrete

constraint in Eq. (4.10) has a continuous format [32],

Pb ≥ 0; ∥Pi,:
b ∥1 = ∥P

i,:
b ∥2,∀i; ∥P

:,j
b ∥1 = ∥P

:,j
b ∥2,∀j, (4.14)

238

0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

0.2 0.6 0.2
0.8 0.2 0.0
0.1 0.2 0.7

Step

0 1 0
0.9 0 0.1
0 0 1

1 2 T

0 1 0
0.1 0.9 0
0 0 1

0 1 0
1 0 0
0 0 1

illegal

0.71 0.71 0
0.71 0.71 0
0 0 1

Stochastic Permutation Legalization (SPL)

Max

0.2 0.7 0.1
0.8 0.2 0.0
0.1 0 0.9

3

0 1 0
0 1 0
0 0 1

SVD
0.68 0.79 0.12

0.78 0.63 -0.06

0.03 -0.10 0.96

+ Max

legal

Abs

Pass legality check

Reparametrization

C
ol

. N
or

m
.

R
ow

. N
or

m
.

SPL

ALM

MSE

CrossEntropy

Figure 4.15: Top: permutation optimization procedure. Bottom: an example
for stochastic permutation legalization (SPL).

where the row-wise and column-wise ℓ1-norm equals to the ℓ2-norm. Eq. (4.14)

can be relaxed to its convex hull, i.e., Birkhoff polytope,

Pb ≥ 0, 1TPb = 1T , Pb1 = 1, 1 = (1, · · · , 1)T . (4.15)

As shown in Fig. 4.15, we use 1) reparametrization to approximately

bound P in the Birkhoff polytope and 2) augmented Lagrangian method (ALM)

to push P to a real permutation. Hence we enable differentiable permutation

optimization during the SuperMesh weight training phase. We add an extra

ALM term LP in the objective,

LP =

Bmax∑
b=1

K∑
i=1

λr
b,i∆P̃

i,:
b +

Bmax∑
b=1

K∑
j=1

λc
b,j∆P̃

:,j
b

+
ρ

2

Bmax∑
b=1

K∑
i=1

λr
b,i(∆P̃

i,:
b)2+

ρ

2

Bmax∑
b=1

K∑
j=1

λc
b,j(∆P̃

:,j
b)2,

(4.16)

239

where λr, λc ∈ RBmax×K are the row-wise and column-wise Lagrangian multi-

pliers, ρ is the scalar quadratic penalty coefficient, and ∆ denotes the difference

between the ℓ1 norm and ℓ2 norm of the vector, e.g., ∆P̃
i,:
b = ∥P̃i,:

b ∥1 − ∥P̃
i,:
b ∥2.

This is different from the standard ALM formulation as the quadratic term

is also controlled by λ. In this way, the optimization is dominated by the

task-specific loss at the beginning and gradually honors the constraint.

We reparametrize Pb as P̃b to simplify the constraints in Eq. (4.15).

We (1) first apply an absolute operation to the relaxed matrix to guarantee

non-negativity, (2) then apply column-/row-wise normalization, and (3) finally

apply row-wise soft projection to force binarization,

P′
b =

|Pb|
1T |Pb|

, P′′
b =

P′
b

P′
b1

, P̃b = ΩP (P
′′
b)

ΩP (P
′′i,j
b) =

{
Round(P

′′i,j
b) if max(P

′′i,:
b) ≥ 1− ϵ,

P
′′i,j
b if max(P

′′i,:
b) < 1− ϵ

,

(4.17)

where ϵ is the projection threshold, typically set to 0.05. The soft projection

stops gradients when P̃ is very close to a real permutation, which is designed

to avoid gradient instability issues caused by an overly large linear penalty

term as λ quickly increases.

At each iteration in the SuperMesh weight training phase, we first

update the relaxed permutation matrices using gradient-based methods, then

we update the Lagrangian multipliers as follows,

λr
b,i += ρ

(
∆P̃

i,:
b +

1

2
(∆P̃

i,:
b)2
)
, λc

b,j += ρ
(
∆P̃

:,j
b +

1

2
(∆P̃

:,j
b)2

)
. (4.18)

Stabilize Optimization via Initialization and Normalization. The

relaxed P̃ cannot guarantee orthogonality during optimization. Thus cascading

240

multiple such matrices ruins the orthogonality of U and V and causes training

difficulty due to statistical instability. To mitigate it, we initialize P with a

smoothed identity, i.e., P0 = I(1
2
− 1

2K−2
)+ 1

2K−2
, shown in Fig. 4.15. Note that

initializing it with random permutations does not work since no gradients will

flow back to zero entries. In addition, we propose a second technique to solve

this via row-wise and column-wise ℓ2 normalization on the constructed U and

V , respectively. By doing this, the normalized U and V can approximate the

properties of true unitaries. This normalization takes no effects when U and

V converge to real unitaries but helps to stabilize the matrix statistics.

Scheduling Coefficient ρ. ρ determines the speed to increase λ. A large ρ

quickly traps P̃ to a nearby suboptimal permutation. An overly small ρ has

too weak constraints on the permutation. Thus we increase ρ as ρ← ργt,∀t=

0, · · · , T , such that ρT ≈ 1e4 · ρ0.

Stochastic Permutation Legalization (SPL). Due to high non-convexity

in the problem Eq. (4.16), our ALM-based method does not guarantee con-

vergence to a legal permutation. Instead, it may stuck at saddle points shown

in Fig. 4.15. To force P̃ to a legal permutation after SuperMesh training, we

propose the following stochastic permutation legalization (SPL),

PSQ∗ = SVD
(
Softmax(P/τ)

)∣∣
τ→0+

,

PSPL = Softmax
(
(|PQ∗|+ δ)/τ

)∣∣
τ→0+

,
(4.19)

where δ ∼ N(0, σ2). We give an example in Fig. 4.15. The first Softmax

binarizes the matrix. Then, the SVD-based projection pushes the solution

away from saddle points. After that, random perturbations are added to

241

break the ties between different rows. The final Softmax pushes it into a

legal permutation in a stochastic manner. We repeat the second equation by

multiple times until we find a legal solution without introducing too many

extra crossings.

Optimize Directional Couplers T The transmission coefficient t of each

directional coupler in the DC layer is a binary optimization variable t ∈ {
√
2
2
, 1}.

t=1 represents a direct waveguide connection without placing a DC. We treat

t as a SuperMesh weight and perform quantization-aware training to learn

the DC layers. The DC binarization and its gradient are given as follows,

T (tq) = T (Q(t)), Q(t) = (sign(t) + 1)× 2−
√
2

4
+

√
2

2
,

∂L

∂t
= min

(
1,max

(
− 1,

∂L

∂tq
× 2−

√
2

4

))
.

(4.20)

Optimize Diagonal Matrix Σ and Phases Φ We treat the diagonal ma-

trix Σ and phase shifter configurations Φ as the SuperMesh weights. During

SuperMesh training, we simply apply the standard backpropagation to train

them.

4.3.2.4 PDK-Adaptive Footprint-Constrained SuperMesh Optimiza-
tion

An important hardware constraint we need to honor is the target pho-

tonic circuit footprint, given the component sizes from a foundry PDK. We

solve the inequality footprint constraint by adding a probabilistic footprint

242

Table 4.4: Evaluate searched PTCs with different sizes and footprint targets
on MNIST with a 2-layer CNN. The total block number is #Blk=BU + BV .
#PS is omitted since we have #PS =K·#Blk. All footprint constraints follow
Fmin = 0.8Fmax. ADEPT-a1 to ADEPT-a5 cover 5 different footprint targets
with the device specification from AMF foundry PDKs. In the AMF PDKs [2],
the footprint of PS, DC, and CR is 6800 µm2, 1500 µm2, and 64 µm2, respec-
tively. All footprint is reported in the unit of 1/1000 µm2.

PTC Size Metrics MZI-ONN [171] FFT-ONN [70] ADEPT-a1 ADEPT-a2 ADEPT-a3 ADEPT-a4 ADEPT-a5

8×8

#CR/#DC/#Blk 0/112/32 16/24/6 24/17/5 17/19/6 26/27/8 27/36/11 33/41/13
[Fmin, Fmax] - - [240, 300] [336, 420] [432, 540] [528, 660] [624, 780]
Footprint F 1909 363 299 356 478 654 771

Accuracy (%) 98.63 98.43 98.26 98.49 98.56 98.48 98.69

16×16

#CR/#DC/#Blk 0/480/64 88/64/8 45/28/4 68/43/6 127/59/8 174/71/10 131/85/12
[Fmin, Fmax] - - [480, 600] [672, 840] [864, 1080] [1056, 1320] [1248, 1560]
Footprint F 7683 972 480 722 967 1206 1441

Accuracy (%) 98.65 98.25 98.16 98.40 98.24 98.56 98.57

32×32

#CR/#DC/#Blk 0/1984/128 416/160/10 223/60/4 333/87/6 628/178/8 691/150/10 717/179/12
[Fmin, Fmax] - - [960, 1200] [1344, 1680] [1728, 2160] [2112, 2640] [2496, 3120]
Footprint F 30829 2443 975 1457 1959 2445 2926

Accuracy (%) 98.68 97.97 98.10 98.18 98.36 98.49 98.39

penalty term LF,

LF =


β
(
E[Fprox(α)]/F̂max

)
, E[F(α)] > F̂max,

−β
(
E[Fprox(α)]/F̂min

)
, E[F(α)] < F̂min,

0, otherwise,

E[F(α)] =
Bmax∑
b=1

mb,2Fb, E[Fprox(α)] =

Bmax∑
b=1

mb,2Fb,prox,

Fb = #PS(Rb) · FPS +#DC(Tb) · FDC +#CR(Pb) · FCR,

Fb,prox = #PS(Rb) · FPS +#DC(Tb) · FDC + βCR∥P̃b − I∥22 · FCR,

#PS(Rb) = K, #DC(Tb) =

(K−sb)/2∑
i=1

(2Q(ti)√
2− 2

+
2

2−
√
2

)
,

(4.21)

where β is the penalty weight, and F̂max and F̂min is set to 0.95Fmax and

1.05Fmin to leave a 5% constraint margin. This penalty term allows SuperMesh

to control its expected footprint. Now we give a detailed breakdown of our

probabilistic footprint penalty.

243

Footprint of PS. As an active device, PS is not fixed after manufacturing.

Instead, the phase shifts Φ are important weights to guarantee enough PTC

reprogrammability and ONN expressiveness. Hence, we always assume a full

column of PS, i.e., #PS(Rb) = K.

Footprint of DC. DC is typically fixed and not tunable. Hence the position to

place a DC need to be determined during the PTC design stage. The footprint

of a DC layer is a simple summation of all couplers parameterized by their

binarized coefficient tq, which is fully differentiable by using straight-through

estimators.

Footprint of CR. The number of waveguide crossings, i.e., #CR, can be

obtained by sorting rows of the permutation Pb to an identity I and find-

ing the minimum number of adjacent swaps. However, this crossing count-

ing procedure #CR (Pb) itself is non-differentiable. When calculating the

footprint penalty, we replace #CR(Pb)FCR with a differentiable proxy term

βCRFCR∥P̃b − I∥22, where βCR is used to balance the penalty on DC and CR.

Analytical Bound of the SuperMesh Block Number. Given the de-

vice footprint specification, we can actually calculate the maximum/minimum

footprint of each block. Based on the target footprint, we can find an ana-

lytical bound of the block number for our SuperMesh, i.e., Bmax and Bmin,

without manual definition,

Fb,min=KFPS + FDC, Fb,max=Fb,min +KFDC/2 +K(K−1)FCR/2,
Bmax = ⌈Fmax/Fb,min⌉, Bmin = ⌊Fmin/Fb,max⌋.

(4.22)

244

4.3.3 Experimental Results

4.3.3.1 Experiment Setup

Datasets. We search PTCs on MNIST and evaluate on MNIST, FashionM-

NIST, SVHN [149], and CIFAR-10 datasets.

NN Models. We perform SuperMesh training on MNIST with a 2-layer

CNN (C32K5-BN-ReLU-C32K5-BN-ReLU-Pool5-FC10), where C32K5 is a

32-channel convolution with a kernel size of 5×5. In variation-aware train-

ing, we use LeNet-5 and VGG-8.

Training Settings. We train SuperMesh for 90 epochs using Adam opti-

mizer with an initial learning rate (lr) of 0.001 and a cosine lr scheduler. We

set the weight decay rate to 1e-4 for Φ and Σ, and 5e-4 for θ. We exponentially

decrease the Gumbel-softmax temperature τ from 5 to 0.5. We set 10 epochs

in the SuperMesh Warmup stage. In the SuperMesh Search stage, we train

weights and arch. params with a ratio of 3:1. In the permutation ALM, we set

the initial ρ0=(1e-7)×K/8. We set β and βCR to 10 and 100 in the footprint

penalty. At the 50-th epoch, we force P to a legal permutation by stochastic

permutation legalization (SPL). Then we continue the alternate SuperMesh

training in the rest 40 epochs. During re-training, we sample a SubMesh from

the learned distribution Pθ that satisfies the footprint constraints. Then we

perform variation-aware training with Gaussian phase noises ∆ϕ ∼ N(0, 0.022)

to increase robustness.

245

Table 4.5: MNIST accuracy with 16×16 PTCs on AIM photonics PDKs [195],
where FPS=2500 µm2, FDC=4000 µm2, and FCR=4900 µm2.

PTC Size Metrics MZI-ONN [171] FFT-ONN [70] ADEPT-a0 ADEPT-a1 ADEPT-a2 ADEPT-a3 ADEPT-a4 ADEPT-a5

16×16

#CR/#DC/#Blk 0/480/64 88/64/8 15/35/5 1/58/8 26/58/8 17/92/13 25/99/14 89/111/16
[Fmin, Fmax] - - [384, 480] [480, 600] [672, 840] [864, 1080] [1056, 1320] [1248, 1560]
Footprint F 4480 1007 414 557 679 971 1079 1520

Accuracy (%) 98.77 98.10 98.15 98.30 98.32 98.55 98.64 98.72

4.3.3.2 Main Results

We search PTC topologies with the proposed ADEPT flow on three dif-

ferent PTC sizes (8×8, 16×16, 32×32) with various footprint constraints. We

denote our searched PTC designs as ADEPT-a1 to ADEPT-a5. In Table 4.4, we

compare our ADEPT-series to prior manual PTC designs, i.e., MZI-ONN [171]

and FFT-based ONN [70, 71] on AMF foundry PDKs. For a fair compar-

ison, the butterfly mesh in the FFT-based PTC is not limited to Fourier-

transform but a general trainable transform [71]. On three PTC sizes, the

searched ADEPT-series shows superior adaptability to various footprint con-

straints. Compared to the largest MZI-based PTC, our ADEPT-series shows

competitive learnability with 2×-30× footprint reduction. ADEPT-series out-

performs the FFT-based PTC with higher expressivity, especially on large

PTC sizes, and saves up to 2.5× area. ADEPT shows superior adaptability to

balance footprint and expressiveness.

Adapt PTCs to Different Foundry PDKs. To adapt ADEPT to different

device specifications, we change the foundry PDK from AMF [2] to AIM pho-

tonics [195], which provides much larger waveguide crossings. In Table 4.5,

ADEPT finds feasible PTC topology that avoids using many crossings to honor

246

Table 4.6: Adapt searched 16×16 PTCs to LeNet-5/VGG-8 and different
datasets on AMF PDKs. Test accuracy (%) is given in the table. The PTC is
searched on MNIST and a 2-layer CNN.

Model Datasets MZI [171] FFT [70, 71] ADEPT-a2 ADEPT-a4

Footprint 7683 972 722 1206

LeNet-5
FMNIST 87.33 85.87 85.89 87.07
SVHN 69.91 65.04 65.26 69.20

CIFAR-10 51.40 42.75 51.26 52.42

VGG-8
FMNIST 89.59 88.62 89.23 89.16
SVHN 77.87 75.22 75.86 77.20

CIFAR-10 68.90 63.57 66.30 68.50

the strict footprint constraints. The smallest ADEPT-a0 achieves comparable

accuracy to the FFT-based PTC with 2.4× smaller footprint. Compared to

MZI-based PTC, our ADEPT-a5 is 2.9× more compact with similar expres-

siveness.

Transfer to Different ONNs and Datasets. To further validate the ex-

pressiveness of ADEPT-series searched on a proxy NN model and dataset, we

apply searched PTC structures to other NN architectures and more challeng-

ing datasets in Table 4.6. On three datasets with LeNet-5 and VGG-8, our

searched 16×16 ADEPT-a2 and ADEPT-a4 significantly outperform FFT-based

design with much higher accuracy and 26% footprint reduction. Compared to

the MZI-based PTC, ADEPT-a4 can save over 84% footprint with competitive

performance.

Noise Robustness of Searched PTCs. In Fig. 4.16, we inject phase drifts

into the circuit and perform variation-aware training on all PTC designs [252,

74]. Even with noise-aware training, the MZI-based ONN still suffers a severe

247

0.02 0.04 0.06 0.08 0.10

Phase noise std.

50

70

90

A
c
c
u
ra

c
y

(%
)

MZI

FFT

ADEPT-a2

ADEPT-a4

(a)

0.02 0.04 0.06 0.08 0.10

Phase noise std.

40

60

80

A
c
c
u
ra

c
y

(%
)

MZI

FFT

ADEPT-a2

ADEPT-a4

(b)

Figure 4.16: Robustness evaluation of 16×16 PTCs with various phase noise
intensities. (a) 2-layer CNN on MNIST. (b) LeNet-5 on FMNIST. All models
are trained with variation-aware training. The shadow marks ±3σ uncertainty
over 20 runs.

accuracy drop due to overly large PTC depth. In contrast, our searched PTCs

show similar or even better noise robustness than the logarithmic-depth FFT-

based design.

4.3.3.3 Ablation Studies

Permutation ALM. To better understand the permutation learning process,

we scan different initial values of the ALM penalty coefficient ρ0 and plot the

optimization curves in Fig. 4.17(a). Our method is insensitive to the hyper-

parameter settings and can stably converge with the proposed adaptive penalty

scheduling.

Footprint Penalty. In Fig. 4.17(b), the expected PTC footprint is visu-

alized with different penalty strengths. With β=∼10, the expected footprint

of SuperMesh can be well-bounded. If β is too small, most sampled PTC

structures from Pθ will violate the constraint.

248

0 500 1000 1500 2000

Step

0.000

0.001

0.002

0.003

0.004

0.005

ρ
o
r
λ

ρ0=1e-08

ρ0=5e-08

ρ0=1e-07

ρ0=5e-07

ρ0=1e-06

ρ0=5e-06

0.0

0.3

0.6

0.9

1.2

1.5

P
er

m
u
ta

ti
o
n

L
o
ss

∆
P

(a)

0 50 100 150

Step (k)

0.0

0.1

0.2

0.3

0.4

0.5

P
en

a
lt

y
L F

/
β

β=0.001

β=0.01

β=0.1

β=1

β=10

0

200

400

600

800

E
x
p

ec
te

d
F

o
o
tp

ri
n
t
E

[F
]

Fmin

Fmax

(b)

Figure 4.17: (a) Scan initial ρ in permutation ALM from 5e-8 to 5e-6. Red
lines are averaged λ. Blue curves are permutation errors, i.e., the average
difference between ℓ1- and ℓ2-norm. (b) Scan β in footprint penalty from
0.001 to 10. Red lines are expected footprint E[F(α)] of ADEPT-a1. Black
curves are footprint penalty. The green region marks the constraint.

4.3.4 Summary

In this work, for the first time, we propose an automatic differen-

tiable framework ADEPT for efficient photonic tensor core design. Our ADEPT

constructs a probabilistic photonic SuperMesh, employs an augmented La-

grangian method to learn waveguide connections, and adopts binarization-

aware training to search coupler locations. With a probabilistic footprint

penalty method, ADEPT integrates circuit area constraints into SuperMesh

training procedure to adapt the PTC to various device specifications and

footprint constraints. Extensive experiments show the superior flexibility

of ADEPT for automated PTC topology search adaptive to foundry PDKs.

The searched PTC design outperforms prior manual designs with competitive

expressiveness, 2×-30× smaller footprint, and superior robustness. ADEPT

249

opens a new paradigm in photonic neurocomputing by "nurturing" photonic

circuit design via AI and automation.

250

Chapter 5

Conclusion and Future Work

In this dissertation, we build a holistic framework for photonic AI com-

puting platforms, while carrying out cross-layer device, circuit, architecture,

and algorithm co-design and design automation, closing the virtuous cycle

of photonics for AI and AI for photonics. In the photonics for ML accelera-

tion aspects, specialized photonic neural network accelerators with customized

devices/circuits/architectures, i.e., FFT-ONN, SqueezeLight, O2NN, and

memory-efficient ONNs, are proposed to reduce the area cost, improve

the compute density, flexibility, and system-level energy efficiency. Customized

on-chip training algorithms FLOPS, MixedTrain, and L2ight, are proposed

to enable gradient calculation in situ for efficient ONN on-chip learning to si-

multaneously solve noise robustness and adaptability issues.

On the AI for photonics side, we introduce an ML-assisted ultra-fast

Maxwell equation-solving framework NeurOLight to accelerate photonic de-

vice simulation, enabling future ONN exploration with customized photonic

devices. At the circuit level, we present the first automatic differentiable de-

sign flow ADEPT to search photonic circuit topology toward beyond-human

compactness and noise robustness.

251

To enable the practical application of photonic computing systems in

real-world applications, more technical challenges need to be addressed in the

future. From the system’s perspective, electronics-photonics integration is the

most prominent challenge for optical neural accelerators. Most of the system-

level complication still comes from the I/O and control. The overall system

performance bottleneck is mainly on the data transaction from memory and

analog-to-digital converters (ADCs). In terms of power consumption, nearly

50% of power is from electrical memory, and ADCs/DACs take another 20-

30%, while the photonic circuit only consumes less than 10% total power [159].

The speed and power of memory and ADCs determine the overall benefits one

could gain from optical neurocomputing.

The following are some possible research directions.

Scaling to Larger Models and More Advanced Tasks. Promising direc-

tions include (1) trading universality for higher scalability [70, 52, 260] by re-

stricting the matrix parameter space with specialized circuit and device designs

to balance the hardware cost and programmability; (2) designing customized

photonic devices to achieve higher compute density and power efficiency, e.g.,

multi-operand MRRs [66], multi-operand MZIs [53], meta-lens [212], diffractive

devices; (3) utilizing wavelength/time/mode-division multiplexing to reuse the

hardware for more parallel operations, which is one of the major advantages of

photonic integrated circuits compared to electronic computing units; (4) sup-

porting large-scale NN models, e.g., large-scale attention-based Transformer

models, and applying photonic computing to more advanced edge/cloud AI

252

applications, e.g., vision, audio, language, and control tasks.

Efficient Nonlinearity. Though there exists optical nonlinearity, e.g., sat-

urable absorbers, and electrical-optical nonlinear units [218], the current acti-

vation function is still offloaded to electrical parts. It is of practical usage to

design programmable optical nonlinearity with less energy loss and E-O con-

version latency, which can potentially fuse tensor computation with nonlinear

activations for higher efficiency. Post-CMOS electronics can be potentially

used to achieve nonlinear activation functions. Built-in nonlinear transmis-

sion in photonic modulators, e.g., Lorentzian curve for MRRs and sinusoidal

curves for MZIs can also be explored as potential nonlinearity.

CMOS+Photonics+X: Heterogeneous Integration with New Device

and New Material. Device-level innovation is essential in the ONN design

stack, for example, phase shifters with high tuning efficiency, phase change

materials with short programming latency and high lifetime, on-chip lasers

with high energy efficiency, and high-sensitivity photodetector to support high

readout resolution, transparent monitors to detect intermediate circuit states

for on-chip training and calibration, etc. Besides photonic devices, electronic-

photonic heterogeneous hardware design is also promising. We can leverage the

high speed advantages of photonics for both computing and interconnects. We

can use more efficient electrical memory solutions, e.g., RRAM and magnetic

RAM (MRAM), as a substitution for traditional SRAM/DRAM.

System Innovation: Compute + Sensing/Memory/Interconnect. Sys-

tem designs open a new dimension to optimize the performance of photonic

253

accelerators, including optimization on devices, tensor core type and size, on-

chip interconnect topology, ADCs/DACs, etc [131, 184]. Combining comput-

ing with sensing, memory, and interconnect can resolve the data movement

bottleneck and achieve system-level performance breakthroughs.

Co-Design and Electronic-Photonic Design Automation. EPDA is an-

other critical direction to explore, given the design complexity of heterogeneous

electronic-photonic hardware platforms. Fast and scalable device/circuit sim-

ulation, as well as automated photonic circuit layout generation, are crucial

for the efficient development of photonic computing systems. AI-assisted in-

telligent co-design and EPDA stack can enable unprecedented design quality,

productivity, and efficiency, e.g., automated architecture search, automatic

circuit topology design, layout generation, AI-assisted simulation and perfor-

mance evaluation [76, 118, 69].

Reliability and Security. The computing fidelity and reliability, e.g., res-

olution, noise tolerance, hardware security, and adversarial robustness, are all

critical to the practical deployment of photonic computing systems in real-

world applications. Less sensitive device designs, fault-tolerant architecture

innovations, secure communication protocols, and customized model training

recipes are promising directions to boost the reliability and security of photonic

computing platforms.

254

Appendices

255

.1 Appendices for Introduction

.1.1 ONN Principles

.1.1.1 Mach-Zehnder Interferometers (MZIs)

A basic coherent optical component used in this work is an MZI. One

of the most general MZI structures is shown in Figure 1, consisting of two

50-by-50 optical directional couplers and four phase shifters θT , θL, ωP , and

ωW . An MZI can achieve arbitrary 2×2 unitary matrices SU(2). The physical

𝜃𝑇

𝜃𝐿

𝜔𝑃

𝜔𝑊

Figure 1: 2-by-2 MZI with top (T), left (L), upper (P), and lower (W) phase
shifters.

transfer matrix R(θg,∆θ,∆ω) of an MZI shown in Fig. 1 is,

SU(2) = R(θg,∆θ,∆ω) =

(
t kj
kj t

)(
ejωP 0
0 ejωW

)(
t kj
kj t

)(
ejθT 0
0 ejθL

)
= ejθg

(
sin ∆ω

2
cos ∆ω

2

cos ∆ω
2
− sin ∆ω

2

)(
ej

∆θ
2 0

0 e−j∆θ
2

)
,

θg = θ̄ + ω̄ +
π

2
, θ̄ =

θT + θL
2

, ω̄ =
ωP + ωW

2
,

∆θ = θT − θL, ∆ω = ωP − ωW , t = k =

√
2

2
.

(1)

where the global phase θg is determined by the common mode θ̄ and ω̄, and

the light splitting is determined by the differential mode ∆θ and ∆ω. To

achieve the 2-D planar rotator R(2) in the real space parametrized by ϕ, we

256

let θT = π/2, θL = 3π/2, ω̄ = π. To convert the simplified transfer matrix

M(∆ω) to the planar rotator, we set ∆ω = π − 2ϕ as follows,

R(2) =ej
3π
2

(
sin ∆ω

2
cos ∆ω

2

cos ∆ω
2
− sin ∆ω

2

)(
j 0
0 −j

)
=

(
sin (π−2ϕ

2
) − cos (π−2ϕ

2
)

cos (π−2ϕ
2

) sin (π−2ϕ
2

)

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

(2)

.1.1.2 MZI-based Photonic Tensor Core Architecture

By cascading N(N −1)/2 MZIs into a triangular mesh (Recks-style) or

rectangular mesh (Clements-style), we can construct arbitrary N ×N unitary

U(N).

As a simple example, we show the principle of Recks-style MZI array

for a simple demonstration. A similar decomposition can be derived for the

Clements style. It decomposes an M × N weight matrix using SVD, i.e.,

W = UΣV ∗. The diagonal matrix Σ can be simply implemented by on-chip

attenuators, e.g., single-port MZIs, to perform signal scaling. The unitary

matrices U and V ∗ can be realized by a cascaded MZI triangular array [161].

The unitary group parametrization is given by,

U(N) = D
2∏

i=N

i−1∏
j=1

Rij(ϕij), (3)

where D is a diagonal matrix with ±1 on its diagonal entries, and the 2-

dimensional planar rotator Rij(ϕij) is an n-dimensional identity matrix where

entries on (i,i), (i,j), (j,i), (j,i) are cosϕij, -sinϕij, sinϕij, cosϕij, respectively.

Each rotator Rij can be implemented by a 2×2 MZI that produces unitary

interference of input light signals with a rotation angle ϕ as we show before.

257

.2 Appendices for L2ight

.2.1 Optical Circuit Non-ideality

Rotation Quantization. Given the control resolution limits, we can

only achieve discretized MZI rotation phase configurations. We assume the

phases ϕ is uniformly quantized into b-bit within [0,2π],

Q(ϕ) = Round
(ϕ mod 2π

2π/(2b − 1)

) 2π

2b − 1
. (4)

We assume 8-bit quantization for phases of U and V ∗. For Σ matrices, we

assume larger bitwidths can be affordable and practical.

Phase Shifter Variation. Due to manufacturing error and thermal

noises, the phase shift ϕ caused by a phase shifter is proportional to the device-

related parameter, ϕ ∝ γ. Assume the real coefficient drifts from the theoret-

ical value γ by ∆γ, the real phase shift will become ϕ̃ = γ+∆γ
γ

ϕ. We assume

∆γ ∼ N(0, 0.0022). We denote this multiplicative error for all phase shifters

as a diagonal Γ matrix, such that the non-ideal phase shifts become Φv = ΓΦ.

MZI Crosstalk. Due to signal crosstalk, adjacent MZIs will have

mutual coupling effects, such that the part of the phase shift ϕ for the i-th

MZI will partially contribute to its neighboring MZI ϕj with a factor of ωi,j.

This crosstalk effect can be simply modeled as coupling matrix Ω,

258


ϕc
0

ϕc
1
...

ϕc
N−1

 =


ω0,0 ω0,1 · · · ω0,N−1

ω1,0 ω1,1 · · · ω1,N−1
...

...
. . .

...
ωN−1,0 ωN−1,1 · · · ωN−1,N−1




ϕv
0

ϕv
1
...

ϕv
N−1


s.t. ωi,j = 1, ∀ i = j

ωi,j = 0, ∀ i ̸= j and ϕj ∈ P (5)
0 ≤ ωi,j < 1, ∀ i ̸= j and ϕj ∈ A.

The diagonal factor ωi,j, i = j is the self-coupling coefficient. ωi,j, i ̸= j is

the mutual coupling coefficient [140, 72, 65]. We assume the self-coupling

coefficient to be 1, and the mutual coupling coefficient is 0.005 for adjacent

MZIs.

.2.2 Intractable Gradients for MZI Rotations

To optimize the MZI meshes, a straightforward idea is to use first-order

methods to optimize all rotations phases ΦU , ΦV , and ΦΣ. The analytical

gradients for phases in unitary matrices are shown as,

∂L

∂Rij
=
(
DRn1Rn2Rn3

)T∇yL xT
(
· · ·R32R21ΣV ∗)T

∂L

∂ϕij
= Tr

((∂L

∂Rij
⊙ ∂Rij

∂ϕij

)
(ei + ej)(ei + ej)

T

)
.

(6)

Therefore, it is prohibitively expensive to derive the analytical phase gradients,

which is one of the key motivations for our subspace optimization method.

259

.2.3 Detailed Description of the Proposed Parallel Mapping Algo-
rithm

We give a detailed description of our parallel mapping algorithm. Zeroth-

order coordinate descent (ZCD) is used as an example. In line 4, we first derive

and implement the optimal theoretical singular values and initialize ΦU and

ΦV using the decomposed values. In lines 8-13, we use ZCD to alternately opti-

mize phases in U and V ∗ under all non-ideal effects till convergence. The step

size is strictly bounded by the smallest phase control resolution. Exponential

decay is used to quickly reduce the learning rate to avoid divergence. Note

that cosine-annealing will not work since the ZO descent will rapidly converge,

given its greedy search nature. Then at the end, due to the suboptimality in

ZCD, we will perform OSP to find the current optimal singular values that

minimize the mapping error given the trained UT and V ∗,T .

Algorithm 5 Parallel Mapping with ZCD and OSP

Input: Mapping loss LM , mapping target W , total iterations T , inner ZCD
iterations S, step size decay factor β, ZCD step size upper bound δϕu =

2π
2min(bl,b)−1

, ZCD step size lower bound δϕl =
2π

2min(bm,b)−1
δϕ = δϕu

for Weight block Wpq ∼W do
Step 1: SVD and Parametrization via Eq. (3.23)
Upq(Φ

U
pq),Σpq(Φ

S
pq),V

∗
pq(Φ

V
pq) = UP

(
SVD(Wpq)

)
Step 2: ZCD on Upq,V

∗
pq

for t← 0 · · ·T − 1 do
for s← 0 · · ·S − 1 do Randomly sample a phase ϕ ∼ {ΦU

pq,Φ
V
pq}

if LM
pq (ϕ

tS+s + δϕ) < LM
pq (ϕ

tS+s) then ϕtS+s+1 ← ϕtS+s + δϕ
else ϕtS+s+1 ← ϕtS+s − δϕ δϕ← max(δϕ/β, δϕl)

Step 3: Optimal Projection on Σpq Σpq ← diag(Ĩ∗U ∗
pqWpqVpqĨ)

Return: Converged phases ΦM

260

.2.4 Prove of Unbiased Gradient Approximation with Feedback
and Feature Sampling

Claim 2. Considering the l-th layer with input x ∈ RN and pre-activation

y ∈ RM , we denote the blocking weight matrix as W = {Wpq}
P=M

k
,Q=N

k
p,q=1,1 and

nonlinear activation as σ. During backward, we randomly sample the feedback

matrix W T ∈ RN×M with a structured sparse mask PW = cW (SW⊗1). A sim-

ilar sampling matrix Px is applied to input features. The estimated gradients

are unbiased, i.e., E[
(
∂L
∂Σ

)
S
] = ∂L

∂Σ
.

Proof. Given E[P] = 1, we have

E[(W T
l)SWl

] =E[W T
l ⊙ PWl

] = W T
l

E[(xT
l)Sxl

] =E[xT
l ⊙ Pxl

] = xT
l .

(7)

Then we can derive

E[
(∂L
∂yl

)
SWl

] =E
[
σ′
l

L−1∏
i=l+1

((W T
i)SWl

⊙ σ′
i)(W

T
L)SWl

∂L

∂yL

]
=

∂L

∂yl

E
[(∂L
∂Σl

)
S

]
=E
[
U∗(∂L

∂yl

)
SWl

(xTl)Sxl
V
]
=

∂L

∂Σl
.

(8)

.2.5 Training Details

We implement ONN simulation, all models, and training logic in Py-

Torch 1.8.1. All experiments are conducted on a machine with an Intel Core

i7-9700 CPU and an NVIDIA Quadro RTX 6000 GPU. For identity calibra-

tion, we set the epoch to 400 with an initial learning rate of 0.1, a decay rate

of 0.99, and a phase resolution of 8 bit. For parallel mapping, we set the epoch

261

to 300 with an initial learning rate of 0.1, a decay rate of 0.99, and a phase

resolution of 8 bit. For subspace learning, we adopt AdamW as the optimizer

with a learning rate of 0.002 and a weight decay rate of 0.01 for subspace learn-

ing from scratch. Epochs are set to 100 for MNIST, FashionMNIST training,

200 for CIFAR-10/100, and TinyImageNet. For subspace learning after map-

ping, we reduce the epoch to 20 and the learning rate to 0.0002. We use

cosine-annealing as the learning rate scheduler. When compared with prior

on-chip learning protocols, we adopt the recommended settings for FLOPS

and MixedTrn in [74, 65]. For FLOPS, the total epochs are set to 50, the

initial learning rate is 2, and the gradient samples are set to 5. For MixedTrn,

we train for 20 epochs, the mixed-training sparsity is set to 0.4, the param-

eter sparsity is set to 0.1, and the initial learning rate is set to 0.02. When

compared with prior sampling methods, we apply uniform spatial sampling

with expectation-maintained normalization for RAD [153]. For SWAT-U [157],

we apply uniform spatial feature sampling without normalization and uniform

weight matrix sampling with expectation-maintained normalization. Since we

only perform efficient training, we turn off any sampling in inference.

.2.6 MZI Array Scaling

A single MZI array has a limited size due to its high area cost, e.g.,

up to 32 or 64. However, this is not an issue for our framework. Multi-

core systems with small subarrays are trends for analog computing, which

is the design concept of our accelerator in Figure 3.16. Multiple PTCs are

262

Table 1: Relative matrix error with different MZI array sizes.

Blk size 8 9 12 16 24 32

Rel. Err. 0.025 0.032 0.043 0.061 0.094 0.126
std. 2e-4 3e-4 3e-4 5e-4 9e-4 1e-3

interconnected to support a large tensor computation in parallel. Therefore,

our system’s performance will not be limited by the scale of a single PTC.

Actually, partitioning a large tensor operation into small chunks is widely

adopted and recently considered as a better solution than large array sizes due

to noise robustness consideration.

We adopt 9×9 blocks based on the following considerations.

Hardware practicality. The largest commercial demonstration of optical

neural chips is 32×32 so far. 9×9 is a practical, robust, and efficient setting

according to recent experimental demonstrations.

Robustness. Larger MZI arrays will cause severe phase error accumulation

effects. Cascaded phase error will cause non-trivial fidelity and robustness

issues as the block size increases. 9×9 is generally a robust design configuration

when cascaded noises are still tolerable. Here we show a table of noise-induced

errors (relative matrix distance) with various block sizes on a 256×256 weight

matrix. Std. is calculated based on 20 runs. Phase shifter gamma noise

std=0.002, crosstalk factor=0.005, quantization bitwdith=8-bit. We observe

large array sizes are noise-sensitive in general.

ZOO Convergence. IC and PM are zeroth-order optimization techniques.

Each block indicates an optimization instance. Larger block size will have

263

Table 2: IC optimality with different array sizes.

Blk size 8 9 12 16 24 32

(MSEU +MSEV)/2 0.0135 0.013 0.03 0.039 0.04 0.045

Table 3: Subspace learning accuracy with different block sizes.

Blk size 8 9 12 16 24 32

Accuracy 84.26 84.45 83.36 81.27 80.68 78.40

negative impacts on the optimization convergence and solution optimality,

which is the intrinsic limitation of most zeroth-order optimizers. In the IC

procedure, for relatively large block sizes, our ZO optimizers, unfortunately,

will have solution quality degradation due to the curse of dimensionality and

efficiency degradation due to low parallelism. Here we show how solution

quality in identity calibration changes with various block sizes. 9×9 block is

a good selection with high solution quality.

Parameter Space. Subspace learning only optimizes the singular values

while U and V are fixed. For an N × N weight matrix with k × k blocks,

only N2/k singular values are trainable. Increasing the block size k will

decrease the parameter space. According to the experience from the field

of structured/subspace neural networks, e.g., block-circulant neural nets, the

block size is typically set to a number around 8. Here we add new results on

L2ight-SL (αW=αC=0.6, αD=0.5) CIFAR-10 VGG8 with various block sizes.

According to our experiments below, 16×16 blocks already show inadequate

trainability due to overly small parameter space, leading to a clear accuracy

drop. In conclusion, we recommend using multiple interconnected 9×9 PTCs

264

for parallel computing, since this choice of 9×9 block balances both systematic

performance, hardware complexity, robustness, and on-chip trainability.

.2.7 Hardware Cost Evaluation

.2.7.1 PTC Energy Estimation

For simplicity, we count the number of PTC calls as the indicator of the

total energy estimation of the PTC cluster. For example, we focus on a 2-D

convolutional layer with kernel shape of Cout×Cin×K×K, input feature size

B×Cin×H ×W output feature size of B×Cout×H ′×W ′. We partition the

unfolded weight matrix into P × Q blocks with size of k × k and assign each

to a PTC. We have P = ⌈Cout

k
⌉ and Q = ⌈Cin×K2

k
⌉. Each PTC can utilize k

wavelengths to achieve parallel processing. Now we give detailed computation

of energy breakdown per optimization iteration.

Forward Energy = CoutCinK
2BH ′W ′

Backward Weight Energy = 2Tr(STCSC)BPQ

Backward Input Energy = Tr(STWSW)BHW.

(9)

Note that in backward weight energy, we double the PTC call since the in-situ

subspace gradient acquisition requires 2 PTC calls.

.2.7.2 Total Time Step Estimation

We assign k electrical adders for each PTC to implement sequential

cross-PTC reduction and parallel local accumulation. Each PTC call counts

as one step, each partial product/gradient accumulation stage counts as one

step, and the Hadamard multiplication in gradient computation also counts

265

as one step. Given this assumption, we derive the time step as,

Forward Step = (Q− 1)+BH′W ′ + ⌈
BH′W ′

k
⌉

Backward Weight Step = 4Tr(STCSC)B

Backward Input Step =


⌈
Cin

P
⌉⌈log2 2k⌉⌈

1

2
max

q

((∑
SW (q, :)− 1

)
+

)
⌉BHW, K > 1, stride < K

max
q

((∑
SW (q, :)− 1

)
+

)
BH′W ′, K = 1

(10)

.2.7.3 WDM Dispersion Discussion

Theoretically, coherent photonic circuits will have slightly different phase

responses to different working wavelengths. However, we claim that this

frequency-specific phase shift has minimum impacts on our learning proce-

dure.

Negligible Dispersion. Our PTC core is intentionally designed to have a

small-scale, i.e., 9×9. Hence we require 9 wavelengths in our framework. This

avoids too many wavelengths being used. Therefore, the spectrum range will

be relatively small. Conservatively we assume 8 nm between the furthest two

wavelengths. Based on the phase response equation, ∆ϕ(λ) = 2πneff (λ)L/λ,

this leads to a maximum 1-2% phase difference for the furthest two wave-

lengths. On a small MZI array, this phase difference will only cause negligible

transfer function drift. We simulate this effect when the weight block size is

set to 9×9 and inject 1-2% dispersion-induced MZI phase response drift; the

transfer matrix has 0.5% relative error and 0.5% mean square error. Com-

pared with the gradient approximation error caused by our three-level sparse

sampling, phase variation, and thermal crosstalk, shown in Fig. 8, this slight

266

drift caused by WDM dispersion is negligible.

High Non-ideality Tolerance. Our experiments show that first-order sub-

space learning is very robust to all these gradient approximation errors. With

all the above non-ideality, the approximated gradient directions are still well-

aligned with the true gradients. The on-chip learning procedure works as

expected even when WDM dispersion effects are considered. This effect can

be considered in-situ when using WDM on MZI array training, therefore, the

model can tolerate this non-ideal effect without inference accuracy degrada-

tion.

Dispersion-free Devices. In the literature, there are WDM dispersion-free

MZI devices being proposed [43]. Within the 45nm range, the coefficient of

phase shifters can be maintained. Thus, the phase response to 9 different

wavelengths can be compensated to almost the same response. This further

shows that WDM dispersion is not a major concern for our assumed ONN

architecture and proposed training flow.

.3 Appendices for NeurOLight

.3.1 Optical Field Simulation

Analyzing how light field propagates through those components is crit-

ical to device optimization and photonic integrated circuit design. Given a

linear isotropic optical component, we will shine time-harmonic continuous-

wave light on its input ports and analyze the steady-state electromagnetic

field distributions E = x̂Ex + ŷEy + ẑEz and H = x̂Hx + ŷHy + ẑHz in it,

267

each of which includes horizontal (x), vertical (y), and longitudinal (z) com-

ponents. The light field follows the Maxwell PDE under certain absorptive

boundary conditions [100],

∇×E(r, t) = µ0
∂H(r, t)

∂t
+ Je(r, t), ∇×H(r, t) = −ϵ0ϵr(r)

∂E(r, t)

∂t
+ Je(r, t),

(11)

where ∇× is the curl operator of a vector function, µ0 is the vacuum magnetic

permeability, ϵ0 and ϵr are the vacuum and relative electric permittivity, Jm

and Je are the magnetic and electric current sources. Since the input light is

time-harmonic at a vacuum angular frequency ω, the time-domain PDE can

be transformed to the frequency domain for the steady state as follows,

∇×E(r) = jωµ0H(r) + Jm(r), ∇×H(r) = −jωϵ0ϵr(r)E(r) + Je(r). (12)

A simple variable substitution gives us the curl-of-curl Maxwell PDE,(
(µ−1

0 ∇×∇×)− ω2ϵ0ϵr(r)
)
E(r) = jωJe(r),

(
∇× (ϵ−1

r (r)∇×)− ω2µ0ϵ0
)
H(r) = jωJm(r).

(13)

To restrict a unique solution without boundary reflection, complicated bound-

ary conditions will be inserted [100]. An artificial material, i.e., coordinate-

stretched perfectly matched layer (SC-PML), will be padded around the solv-

ing domain. Such PML materials have large imaginary parts in the permittiv-

ities to introduce strong energy absorption and change the derivative operator

to ∇ = (1
sx(x)

∂
∂x
, 1
sy(y)

∂
∂y
, 1
sz(z)

∂
∂z
), where s is a location-determined complex

value. Solving the above PDEs will give the steady-state frequency-domain

complex magnitude of the optical fields.

268

.3.2 Dataset Generation

We generate our customized MMI device simulation dataset using an

open-source FDFD simulator angler [100]. The tunable MMI dataset has 5.5

K single-source training data, 614 validation data, and 1.5 K multi-source test

data. The etched MMI dataset has 12.4 K single-source training data, 1.4

K validation data, and 1.5 K multi-source test data. We summarize how we

generate random devices in Table 4. We randomly sample the physical dimen-

sion of the MMI, input/output waveguide width, the width of the perfectly

matched layer (PML), device border width away from PML, controlling pad

sizes, input light source frequencies, etched cavity sizes and ratio (determines

the number of cavities in the MMIs), and permittivities in the controlling

region.

Table 4: Summary of device design variable’s sampling range, distribution,
and unit.

Variables Value/Distribution Unit
|J| × |J| Tunable MMI |J| × |J| Etched MMI

Length U(20, 30) U(20, 30) µm
Width U(5.5, 7) U(5.5, 7) µm
Port Length 3 3 µm
Port Width U(0.8, 1.1) U(0.8, 1.1) µm
Border Width 0.25 0.25 µm
PML Width 1.5 1.5 µm
Pad Length U(0.7, 0.9)×Length U(0.7, 0.9)×Length µm
Pad Width U(0.4, 0.65)×Width/|J| U(0.4, 0.65)×Width/|J| µm
Wavelengths λ U(1.53, 1.565) U(1.53, 1.565) µm
Cavity Ratio - U(0.05, 0.1) -
Cavity Size - 0.027 Length × 0.114 Width µm2

Relative Permittivity ϵr U(11.9, 12.3) {2.07, 12.11} -

269

https://github.com/fancompute/angler

.3.3 Training Settings

We implement all models and training logic in PyTorch 1.10.2. All

experiments are conducted on a machine with Intel Core i7-9700 CPUs and

an NVIDIA Quadro RTX 6000 GPU. For training from scratch, we set the

number of epochs to 200 with an initial learning rate of 0.002, cosine learning

rate decay, and a mini-batch size of 12. For the tunable MMI dataset, we

split all 7,680 examples into 72% training data, 8% validation data, and 20%

test data. For the etched MMI dataset, we split all 15,360 examples into 81%

training data, 9% validation data, and 10% test data. For device adaptation,

we first perform linear probing for 20 epochs with an initial learning rate of

0.002 and cosine learning rate decay; then we perform finetuning for 30 epochs

with an initial learning rate of 0.0002 and a cosine learning rate decay. We

apply stochastic network depth with a linear scaling strategy and a maximum

drop rate of 0.1.

.3.4 Model Architectures

UNet. We construct a 4-level convolutional UNet with a base channel number

of 34. The total parameter count is 3.47 M.

FNO-2d. For Fourier neural operator (FNO), we use 5 2-D FNO layers

with a channel number of 32. The Fourier modes are set to (#Modez=32,

#Modex=10). The final projection head is CONV1×1(256)-GELU-CONV1×1(2).

The total parameter count is 3.29 M.

F-FNO. For factorized Fourier neural operator (F-FNO), we use 12 F-

270

FNO layers with a channel number of 48. The Fourier modes are set to

(#Modez=70, #Modex=40). The final projection head is CONV1×1(256)-

GELU-CONV1×1(2). The total parameter count is 3.16 M.

NeurOLight. For our proposed NeurOLight, we use 12 F-FNO layers for

tunable MMIs and 16 layers for etched MMIs with a base channel number

C=64. The convolution stem is BSConv3×3(32)-BN-ReLU-BSConv3×3(64)-

BN-ReLU, where BSConv is blueprint convolution [79]. The Fourier modes are

set to (#Modez=70, #Modex=40). The channel expansion ratio in the FFN is

set to s=2. The final projection head is CONV1×1(256)-GELU-CONV1×1(2).

The total parameter count is 1.58 M.

271

Bibliography

[1] Adc (analog-to-digital converters) – alphacore., https://www.alphacoreinc.com/adc-

analog-to-digital-converters/.

[2] Advanced micro foundry, http://www.advmf.com/services/.

[3] Menachem Adelman and Mark Silberstein. Faster neural network train-

ing with approximate tensor operations. arXiv preprint arXiv:1805.08079,

2018.

[4] Hengameh Bagherian, Scott A. Skirlo, Yichen Shen, et al. On-chip

optical convolutional neural networks. ArXiv, abs/1808.03303, 2018.

[5] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order non-

convex stochastic optimization: Handling constraints. Arxiv, 2019.

[6] V. Bangari, B. A. Marquez, H. Miller, A. N. Tait, M. A. Nahmias, T. F.

de Lima, H. Peng, P. R. Prucnal, and B. J. Shastri. Digital electronics

and analog photonics for convolutional neural networks (DEAP-CNNs).

IEEE JSTQE, 2020.

[7] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable

methods for 8-bit training of neural networks. In Proc. NeurIPS, 2018.

272

[8] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and An-

imashree Anandkumar. signSGD: Compressed optimisation for non-

convex problems. In Proc. ICML, volume 80, pages 560–569, 2018.

[9] Liane Bernstein, Alexander Sludds, Ryan Hamerly, Vivienne Sze, Joel

Emer, and Dirk Englund. Freely scalable and reconfigurable optical

hardware for deep learning. ArXiv, abs/2006.13926, 2020.

[10] Adel Bibi, El Houcine Bergou, Ozan Sener, Bernard Ghanem, and Pe-

ter Richtarik. A stochastic derivative-free optimization method with

importance sampling: Theory and learning to control. In Proc. AAAI,

2020.

[11] D. Brunner, M. C. Soriano, C. R. Mirasso, et al. Parallel photonic in-

formation processing at gigabyte per second data rates using transient

states. Nature Communications, 2013.

[12] J. Bueno, S. Maktoobi, L. Froehly, et al. Reinforcement learning in a

large-scale photonic recurrent neural network. Optica, 2018.

[13] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han.

Once for All: Train One Network and Specialize it for Efficient Deploy-

ment. In Proc. ICLR, 2020.

[14] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,

Alexander Kirillov, and Sergey Zagoruyko. End-to-End object detection

with transformers. In Proc. ECCV, 2020.

273

[15] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,

Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve

Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.

Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[16] K. Chellapilla, Sidd Puri, and P. Simard. High performance convolu-

tional neural networks for document processing. In Proc. ICFHR, 2006.

[17] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. CrossViT: Cross-

attention multi-scale vision transformer for image classification. In

Proc. ICCV, 2021.

[18] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David

Luan, and Ilya Sutskever. Generative pretraining from pixels. In

Proc. NeurIPS, 2020.

[19] Mingkun Chen, Robert Lupoiu, Chenkai Mao, Der-Han Huang, Jiaqi

Jiang, Philippe Lalanne, and Jonathan Fan. Physics-augmented deep

learning for high-speed electromagnetic simulation and optimization.

Nature, 2021.

[20] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh.

ZOO: Zeroth Order Optimization Based Black-Box Attacks to Deep Neu-

ral Networks without Training Substitute Models. In Proc. AISec, page

15–26, 2017.

274

[21] Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong,

and David Cox. Zo-AdaMM: Zeroth-order adaptive momentum method

for black-box optimization. In Proc. NeurIPS, pages 7204–7215, 2019.

[22] Y. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for

Energy-Efficient Dataflow for Convolutional Neural Networks. In Proc. ISCA,

pages 367–379, 2016.

[23] Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. In

Proc. ISSCC, pages 262–263, 2016.

[24] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural net-

works. IEEE Journal Solid-State Circuits, 52(1):127–138, 2017.

[25] Yinpeng Chen, Xiyang Dai, Mengchen Liu, et al. Dynamic convolution:

Attention over convolution kernels. In Proc. CVPR, 2020.

[26] Q. Cheng, J. Kwon, M. Glick, M. Bahadori, L. P. Carloni, and K. Bergman.

Silicon Photonics Codesign for Deep Learning. Proceedings of the IEEE,

2020.

[27] François Chollet. Xception: Deep learning with depthwise separable

convolutions. In Proc. CVPR, pages 1800–1807, 2017.

[28] M.E.H. Chowdhury, A. Khandakar T. Rahman, R. Mazhar, M.A. Kadir,

Z.B. Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N. Al-Emadi, M.B.I.

275

Reaz, and M. T. Islam. Can AI help in screening Viral and COVID-19

pneumonia? IEEE ACCESS, 8:132665 – 132676, 2020.

[29] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xi-

aolin Wei, Huaxia Xia, and Chunhua Shen. Twins: Revisiting the

Design of Spatial Attention in Vision Transformers. In Proc. NeurIPS,

2021.

[30] William R. Clements, Peter C. Humphreys, Benjamin J. Metcalf, et al.

Optimal Design for Universal Multiport Interferometers. Optica, 2018.

[31] Kieran Cooney and Frank H. Peters. Multimode Interference Couplers

with Tunable Power Splitting Ratios. Optics Express, 2016.

[32] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen

Gould. DeepPermNet: Visual Permutation Learning. In Proc. CVPR,

2017.

[33] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Ran-

daugment: Practical automated data augmentation with a reduced search

space. In CVPR Workshop, 2020.

[34] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher

Ré. Learning fast algorithms for linear transforms using butterfly fac-

torizations. In Proc. ICML, 2019.

276

[35] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In Proc. CVPR,

pages 248–255, 2009.

[36] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. GXNOR-

Net: Training deep neural networks with ternary weights and activations

without full-precision memory under a unified discretization framework.

Neural Networks, 2018.

[37] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model

compression and hardware acceleration for neural networks: A compre-

hensive survey. Proceedings of the IEEE, 2020.

[38] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob

Fergus. Exploiting Linear Structure Within Convolutional Networks for

Efficient Evaluation . In Proc. NIPS, 2014.

[39] D.H. Deterding. Speaker normalisation for automatic speech recogni-

tion. PhD thesis, University of Cambridge, 1989.

[40] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, et al. CirCNN:

Accelerating and Compressing Deep Neural Networks Using Block-Circulant

Weight Matrices. In Proc. MICRO, pages 395–408, 2017.

[41] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai

Yu, Lu Yuan, Dong Chen, and Baining Guo. CSWin Transformer:

277

A General Vision Transformer Backbone with Cross-Shaped Windows.

arXiv preprint arXiv:2107.00652, 2021.

[42] A. Dosovitskiy, L. Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, M. Dehghani, Matthias Minderer,

G. Heigold, S. Gelly, Jakob Uszkoreit, and N. Houlsby. An Image is

Worth 16x16 Words: Transformers for Image Recognition at Scale. In

Proc. ICLR, 2021.

[43] Nicolas Dupuis, Benjamin G. Lee, et al. Design and Fabrication of Low-

Insertion-Loss and Low Crosstalk Broadband 2x2 Mach-Zehnder Silicon

Photonic Switches. JLT, 2015.

[44] El Houcine Bergou and Eduard Gorbunov and Peter Richtárik. Stochas-

tic Three Points Method for Unconstrained Smooth Minimization. SIAM

Journal on Optimization, 2020.

[45] J.L. Elman. Distributed representations, simple recurrent networks, and

grammatical structure. In Machine Learning, 1991.

[46] Steven K. Esser, Paul A. Merolla, John V. Arthur, et al. Convolutional

networks for fast, energy-efficient neuromorphic computing. PNAS,

2016.

[47] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan,

Jitendra Malik, and Christoph Feichtenhofer. Multiscale Vision Trans-

formers. In Proc. ICCV, 2021.

278

[48] Michael Y. S. Fang, Sasikanth Manipatruni, Casimir Wierzynski, et al.

Design of optical neural networks with component imprecisions. Optics

Express, 2019.

[49] Michael Y.-S. Fang, Sasikanth Manipatruni, Casimir Wierzynski, Amir

Khosrowshahi, and Michael R. DeWeese. Design of optical neural net-

works with component imprecisions. Opt. Express, 2019.

[50] Johannes Feldmann, Nathan Youngblood, Maxim Karpov, Helge Gehring,

Xuan Li, Maik Stappers, Manuel Le Gallo, Xin Fu, Anton Lukashchuk,

Arslan Raja, Junqiu Liu, David Wright, Abu Sebastian, Tobias Kippen-

berg, Wolfram Pernice, and Harish Bhaskaran. Parallel convolutional

processing using an integrated photonic tensor core. Nature, 2021.

[51] Chenghao Feng, Jiaqi Gu, Hanqing Zhu, Zhoufeng Ying, Zheng Zhao,

David Z Pan, and Ray T Chen. Silicon photonic subspace neural chip

for hardware-efficient deep learning. arXiv preprint arXiv:2111.06705,

2021.

[52] Chenghao Feng, Jiaqi Gu, Hanqing Zhu, Zhoufeng Ying, Zheng Zhao,

David Z Pan, and Ray T Chen. A compact butterfly-style silicon

photonic-electronic neural chip for hardware-efficient deep learning. ACS

Photonics, Nov 2022.

[53] Chenghao Feng, Rongxing Tang, Jiaqi Gu, Hanqing Zhu, David Z. Pan,

and Ray T. Chen. Optically-Interconnected, Hardware-Efficient, Electronic-

279

Photonic Neural Network using Compact Multi-Operand Photonic De-

vices. In SPIE Photonics West, January 2023.

[54] Chenghao Feng, Zhoufeng Ying, Zheng Zhao, et al. Wavelength-division-

multiplexing-based electronic-photonic network for high-speed comput-

ing. In Proc. SPIE, Smart Photonic and Optoelectronic Integrated

Circuits XXII, 2020.

[55] Chenghao Feng, Zhoufeng Ying, Zheng Zhao, Jiaqi Gu, et al. Inte-

grated WDM-based Optical Comparator for High-speed Computing. In

Proc. CLEO, 2020.

[56] Chenghao Feng, Zhoufeng Ying, Zheng Zhao, Jiaqi Gu, et al. Wavelength-

division-multiplexing (WDM)-based integrated electronic–photonic switch-

ing network (EPSN) for high-speed data processing and transportation.

Nanophotonics, 2020.

[57] Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Jiaqi Gu, David Z. Pan,

and Ray T. Chen. Compact design of On-chip Elman Optical Recurrent

Neural Network. In Proc. CLEO, 2020.

[58] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. A note on the

group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736,

2010.

[59] Saeed. Ghadimi and Guanghui. Lan. Stochastic first- and zeroth-

order methods for nonconvex stochastic programming. SIAM Journal

280

on Optimization, 2013.

[60] Saeed. Ghadimi and Guanghui. Lan. Stochastic first- and zeroth-

order methods for nonconvex stochastic programming. SIAM Journal

on Optimization, 2013.

[61] Eduard Gorbunov, Adel Bibi, Ozan Sener, El Houcine Bergou, and Pe-

ter Richtárik. A stochastic derivative free optimization method with

momentum. In Proc. ICLR, 2020.

[62] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand

Joulin, Hervé Jégou, and Matthijs Douze. LeViT: a Vision Transformer

in ConvNet’s Clothing for Faster Inference. In Proc. ICCV, 2021.

[63] Ove Grandstrand. Innovation and Intellectual Property Rights. Oxford

University Press, 2004.

[64] Stefano Grillanda, Marco Carminati, Francesco Morichetti, et al. Non-

invasive monitoring and control in silicon photonics using CMOS inte-

grated electronics. Optica, 2014.

[65] Jiaqi Gu, Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Ray T Chen,

and David Z Pan. Efficient on-chip learning for optical neural networks

through power-aware sparse zeroth-order optimization. In Proc. AAAI,

2021.

[66] Jiaqi Gu, Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Mingjie Liu,

Ray T. Chen, and David Z. Pan. SqueezeLight: Towards Scalable

281

Optical Neural Networks with Multi-Operand Ring Resonators. In

Proc. DATE, February 2021.

[67] Jiaqi Gu, Chenghao Feng, Hanqing Zhu, Ray T. Chen, and David Z.

Pan. Light in AI: Toward Efficient Neurocomputing with Optical Neural

Networks - A Tutorial. IEEE Transactions on Circuits and Systems–II:

Express Briefs (TCAS-II), April 2022.

[68] Jiaqi Gu, Chenghao Feng, Hanqing Zhu, Zheng Zhao, Zhoufeng Ying,

Mingjie Liu, Ray T. Chen, and David Z. Pan. queezeLight: A Multi-

Operand Ring-Based Optical Neural Network with Cross-Layer Scala-

bility. IEEE TCAD, July 2022.

[69] Jiaqi Gu, Zhengqi Gao, Chenghao Feng, Hanqing Zhu, Ray T. Chen,

Duane S Boning, and David Z. Pan. NeurOLight: A Physics-Agnostic

Neural Operator Enabling Parametric Photonic Device Simulation. In

Proc. NeurIPS, 2022.

[70] Jiaqi Gu, Zheng Zhao, Chenghao Feng, et al. Towards area-efficient

optical neural networks: an FFT-based architecture. In Proc. ASPDAC,

2020.

[71] Jiaqi Gu, Zheng Zhao, Chenghao Feng, et al. Towards Hardware-

Efficient Optical Neural Networks: Beyond FFT Architecture via Joint

Learnability. IEEE TCAD, 2020.

282

[72] Jiaqi Gu, Zheng Zhao, Chenghao Feng, Wuxi Li, Ray T. Chen, and

David Z. Pan. FLOPS: Efficient On-Chip Learning for Optical Neural

Networks Through Stochastic Zeroth-Order Optimization. In Proc. DAC,

2020.

[73] Jiaqi Gu, Zheng Zhao, Chenghao Feng, Zhoufeng Ying, Ray T. Chen,

and David Z. Pan. O2NN: Optical Neural Networks with Differential

Detection-Enabled Optical Operands. In Proc. DATE, February 2021.

[74] Jiaqi Gu, Zheng Zhao, Chenghao Feng, Hanqing Zhu, Ray T. Chen, and

David Z. Pan. ROQ: A noise-aware quantization scheme towards robust

optical neural networks with low-bit controls. In Proc. DATE, 2020.

[75] Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Zixuan Jiang, Ray T. Chen, and

David Z. Pan. L2ight: Enabling On-Chip Learning for Optical Neural

Networks via Efficient in-situ Subspace Optimization. In Proc. NeurIPS,

2021.

[76] Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Zixuan Jiang, et al. Adept:

Automatic differentiable design of photonic tensor cores. In Proc. DAC,

2022.

[77] Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang,

Ray T. Chen, and David Z. Pan. Towards Memory-Efficient Neural

Networks via Multi-Level in situ Generation. In Proc. ICCV, October

2021.

283

[78] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based

operator learning for differential equations. In Proc. NeurIPS, 2021.

[79] Daniel Haase and Manuel Amthor. Rethinking depthwise separable

convolutions: How intra-kernel correlations lead to improved mobilenets.

In Proc. CVPR, 2020.

[80] Ryan Hamerly, Liane Bernstein, Alexander Sludds, et al. Large-scale

optical neural networks based on photoelectric multiplication. Phys.

Rev. X, 2019.

[81] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.

Horowitz, and William J. Dally. EIE: Efficient Inference Engine on

Compressed Deep Neural Network. In Proc. ISCA, 2016.

[82] Song Han, Huizi Mao, and William Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantization and

huffman coding. In Proc. ICLR, 2016.

[83] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both

weights and connections for efficient neural networks. In Proc. NIPS,

2015.

[84] Nicholas C. Harris et al. Efficient, compact and low loss thermo-optic

phase shifter in silicon. Opt. Express, 2014.

284

[85] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In ICCV,

2015.

[86] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition. In Proc. CVPR, pages 770–778,

2016.

[87] Zhezhi He, Jie Lin, Rickard Ewetz, et al. Noise injection adaption:

End-to-end reram crossbar non-ideal effect adaption for neural network

mapping. In Proc. DAC, 2019.

[88] D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms,

S. B. Ezra, N. Narkiss, W. Freude, and J. Leuthold. Novel optical

fast fourier transform scheme enabling real-time ofdm processing at 392

gbit/s and beyond. In Proc. IEEE OFC, 2010.

[89] D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurds-

son, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold.

Simple all-optical fft scheme enabling tbit/s real-time signal processing.

Opt. Express, Apr 2010.

[90] Geoffrey Hinton. Neural networks for machine learning. Coursera

Video Lecture, 2012.

[91] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

285

[92] M. Hu, J. P. Strachan, Z. Li, et al. Dot-product engine for neuromor-

phic computing: Programming 1t1m crossbar to accelerate matrix-vector

multiplication. In Proc. DAC, 2016.

[93] C. Huang et al. A silicon photonic–electronic neural network for fibre

nonlinearity compensation. Nat. Electron., 2021.

[94] Chaoran Huang, Simon Bilodeau, Thomas Ferreira de Lima, et al. Demon-

stration of scalable microring weight bank control for large-scale photonic

integrated circuits. APL Photonics, 5(4):040803, 2020.

[95] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Wein-

berger. Densely Connected Convolutional Networks. In Proc. CVPR,

pages 2261–2269, 2017.

[96] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Wein-

berger. Deep Networks with Stochastic Depth. In Proc. ECCV, 206.

[97] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang,

and Bo Li. Orthogonal Weight Normalization: Solution to Optimization

over Multiple Dependent Stiefel Manifolds in Deep Neural Networks. In

Proc. AAAI, 2018.

[98] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, et al. Quantized

neural networks: Training neural networks with low precision weights

and activations. J. Mach. Learn. Res., 2017.

286

[99] Tyler W. Hughes, Momchil Minkov, Yu Shi, and Shanhui Fan. Train-

ing of photonic neural networks through in situ backpropagation and

gradient measurement. Optica, 2018.

[100] Tyler W. Hughes, Momchil Minkov, Ian A. D. Williamson, and Shanhui

Fan. Adjoint method and inverse design for nonlinear nanophotonic

devices. ACS Photonics, 2018.

[101] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,

William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accu-

racy with 50x fewer parameters and< 0.5MB model size. In Proc. ICLR,

2017.

[102] Y. Ji, Y. Zhang, S. Li, et al. NEUTRAMS: Neural network trans-

formation and co-design under neuromorphic hardware constraints. In

Proc. MICRO, 2016.

[103] Yu Ji, Youhui Zhang, Wenguang Chen, et al. Bridge the gap between

neural networks and neuromorphic hardware with a neural network com-

piler. In Proc. ASPLOS, 2018.

[104] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,

Feihu Zhou, et al. Highly Scalable Deep Learning Training System with

Mixed-Precision: Training ImageNet in Four Minutes. arXiv preprint

arXiv:1807.11205, 2018.

287

[105] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann

LeCun, Max Tegmark, and Marin Soljačiundefined. Tunable efficient

unitary neural networks (EUNN) and their application to RNNs. In

Proc. ICML, 2017.

[106] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, et al. In-Datacenter Performance Analysis

of a Tensor Processing Unit. In Proc. ISCA, 2017.

[107] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-

Fei. Novel dataset for fine-grained image categorization. In Proc. CVPR,

2011.

[108] W. Kim, Robert L. Bruce, T. Masuda, G. Fraczak, Nanbo Gong, Pra-

neet Adusumilli, Stefano Ambrogio, Hsinyu Tsai, J. Bruley, J.-P. Han,

M. Longstreet, F. Carta, K. Suu, and Matthew J. BrightSky. Confined

pcm-based analog synaptic devices offering low resistance-drift and 1000

programmable states for deep learning. 2019 Symposium on VLSI Tech-

nology, pages T66–T67, 2019.

[109] D. Kingma and J. Ba. Adam: A method for stochastic optimization.

In Proc. ICLR, 2015.

[110] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D Object

Representations for Fine-grained Categorization. In International IEEE

Workshop on 3D Representation and Recognition (3dRR-13), 2013.

288

[111] A Krizhevsky, I Sutskever, and GE Hinton. Imagenet classification with

deep convolutional neural networks. In Proc. NIPS, 2012.

[112] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of

features from tiny images. 2009.

[113] Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu

Ma, and Percy Liang. Fine-tuning can distort pretrained features and

underperform out-of-distribution. In Proc. ICLR, 2022.

[114] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and

Victor Lem. Speeding-up convolutional neural networks using fine-tuned

cp-decomposition . In Proc. ICLR, 2015.

[115] Y. LeCun. The MNIST database of handwritten digits. http://

yann.lecun.com/exdb/mnist/, 1998.

[116] Juerg Leuthold and Charles H. Joyner. Multimode Interference Cou-

plers with Tunable Power Splitting Ratios. J. Lightwave Technol., 2001.

[117] Jingxi Li, Deniz Mengu, Yi Luo, et al. Class-specific differential detec-

tion in diffractive optical neural networks improves inference accuracy.

Advanced Photonics, pages 1 – 13, 2019.

[118] Mengquan Li, Zhongzhi Yu, Yongan Zhang, Yonggan Fu, and Yingyan

Lin. O-has: Optical hardware accelerator search for boosting both

acceleration performance and development speed. In Proc. ICCAD,

2021.

289

http://yann.lecun.com/ exdb/mnist/
http://yann.lecun.com/ exdb/mnist/

[119] Shiyu Li, Edward Hanson, Hai Li, and Yiran Chen. PENNI: Pruned

Kernel Sharing for Efficient CNN Inference . In Proc. ICML, 2020.

[120] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool.

LocalViT: Bringing locality to vision transformers. arXiv preprint

arXiv:2104.05707, 2021.

[121] Zhe Li, Shuo Wang, Caiwen Ding, et al. Efficient recurrent neural

networks using structured matrices in fpgas. In ICLR Workshop, 2018.

[122] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,

Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neu-

ral operator: Graph kernel network for partial differential equations.

arXiv preprint, arXiv:2003.03485, 2020.

[123] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,

Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier

neural operator for parametric partial differential equations. In Proc. ICLR,

2021.

[124] Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu.

A Comprehensive Linear Speedup Analysis for Asynchronous Stochastic

Parallel Optimization from Zeroth-Order to First-Order. In Proc. NeurIPS,

2016.

[125] S. Liao, Z. Li, X. Lin, Q. Qiu, Y. Wang, and B. Yuan. Energy-efficient,

high-performance, highly-compressed deep neural network design using

290

block-circulant matrices. In Proc. ICCAD, pages 458–465, 2017.

[126] Joowon Lim and Demetri Psaltis. Maxwellnet: Physics-driven deep

neural network training based on maxwell’s equations. Appl. Phys.

Lett., 2022.

[127] D. Liu, Z. Zhao, Z. Wang, Z. Ying, R. T. Chen, and D. Z. Pan. Operon:

Optical-electrical power-efficient route synthesis for on-chip signals. In

Proc. DAC, 2018.

[128] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differen-

tiable Architecture Search. In Proc. ICLR, 2018.

[129] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu,

Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning

rate and beyond. In Proc. ICLR, April 2020.

[130] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang,

and Lisa Amini. Zeroth-order stochastic variance reduction for noncon-

vex optimization. In Proc. NeurIPS, 2018.

[131] W. Liu, W. Liu, Y. Ye, Q. Lou, Y. Xie, and L. Jiang. Holylight: A

nanophotonic accelerator for deep learning in data centers. In Proc. DATE,

2019.

[132] Weiyang Liu, Zhen Liu, Zhiding Yu, et al. Decoupled Networks. In

Proc. CVPR, 2018.

291

[133] Yingjie Liu, Zhiyu Li, Shuai Wang, Nan Zhang, Yong Yao, Jiangbing Du,

Zuyuan He, Qinghai Song, and Ke Xu. Ultra-compact and polarization-

insensitive mmi coupler based on inverse design. In Proc. IEEE OFC,

2019.

[134] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,

Stephen Lin, and Baining Guo. Swin Transformer: Hierarchical Vi-

sion Transformer using Shifted Windows. In Proc. ICCV, 2021.

[135] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learn-

ing nonlinear operators for identifying differential equations based on

the universal approximation theorem of operators. arXiv preprint,

arXiv:1910.03193, 2019.

[136] Sangkug Lym, Armand Behroozi, Wei Wen, Ge Li, Yongkee Kwon, and

Mattan Erez. Mini-Batch Serialization: CNN Training with Inter-Layer

Data Reuse. In Proc. MLSys, 2017.

[137] Julien Mairal, Piotr Koniusz, Zaid Harchaou, and Cordelia Schmid.

Convolutional Kernel Networks. In Proc. NeurIPS, 2014.

[138] R. Meade, S. Ardalan, M. Davenport, J. Fini, C. Sun, M. Wade, A. Wright-

Gladstein, and C. Zhang. TeraPHY: A high-density electronic-photonic

chiplet for optical i/o from a multi-chip module. In Proc. IEEE OFC,

2019.

292

[139] Tomas Mikolov, Martin Karafiát, Lukás Burget, et al. Recurrent neural

network based language model. In INTERSPEECH, 2010.

[140] Maziyar Milanizadeh, Douglas Aguiar, Andrea Melloni, and Francesco

Morichetti. Canceling thermal cross-talk effects in photonic integrated

circuits. J. Light. Technol., 2019.

[141] David A.B. Miller. Analyzing and generating multimode optical fields

using self-configuring networks. Optica, 2020.

[142] Asif Mirza, Febin Sunny, Peter Walsh, Karim Hassan, Sudeep Pasricha,

and Mahdi Nikdast. Silicon Photonic Microring Resonators: A Compre-

hensive Design-Space Exploration and Optimization under Fabrication-

Process Variations. IEEE TCAD, pages 1–1, 2021.

[143] Mario Miscuglio, Zibo Hu, Shurui Li, Jonathan K. George, Roberto Ca-

panna, Hamed Dalir, Philippe M. Bardet, Puneet Gupta, and Volker J.

Sorger. Massively parallel amplitude-only fourier neural network. Op-

tica, 7(12):1812–1819, Dec 2020.

[144] Mario Miscuglio, Zibo Hu, Shurui Li, Jiaqi Gu, et al. Million-channel

parallelism Fourier-optic convolutional filter and neural network proces-

sor. In Proc. CLEO, 2020.

[145] Mario Miscuglio and Volker J. Sorger. Photonic tensor cores for machine

learning. Applied Physics Review, 2020.

293

[146] M. A. Nahmias, T. F. de Lima, A. N. Tait, H. Peng, B. J. Shastri,

and P. R. Prucnal. Photonic multiply-accumulate operations for neural

networks. JSTQE, 2020.

[147] Hani Nejadriahi and Volker J. Sorger. On-chip integrated all-optical fast

fourier transform: Design and analysis. In Frontiers in Optics, 2017.

[148] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimiza-

tion of convex functions. Foundations of Computational Mathematics,

2017.

[149] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, et al.

Reading Digits in Natural Images with Unsupervised Feature Learning.

In Proc. NIPS, 2011.

[150] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,

and Andrew Y. Ng. Reading Digits in Natural Images with Unsuper-

vised Feature Learning. In Proc. NIPS, 2011.

[151] Arild Nøkland. Direct Feedback Alignment Provides Learning in Deep

Neural Networks. In Proc. NIPS, 2016.

[152] Mayumi Ohta, Nathaniel Berger, Artem Sokolov, and Stefan Riezler.

Sparse perturbations for improved convergence in stochastic zeroth-order

optimization. arXiv preprint arXiv:2006.01759, 2020.

[153] Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, and Ryan P

Adams. Randomized automatic differentiation. In Proc. ICLR, 2021.

294

[154] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, et al. Pytorch: An imperative style, high-performance

deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[155] B. S. G. Pillai et al. End-to-end energy modeling and analysis of long-

haul coherent transmission systems. J. Light. Technol., 2014.

[156] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang,

and Alexey Dosovitskiy. Do Vision Transformers See Like Convolutional

Neural Networks? arXiv preprint arXiv:2108.08810, 2021.

[157] Md Aamir Raihan and Tor M. Aamodt. Sparse weight activation train-

ing. In Proc. NeurIPS, 2020.

[158] M. Raissia, P. Perdikarisb, and G. E. Karniadakisa. Physics-informed

neural networks: A deep learning framework for solving forward and

inverse problems involving nonlinear partial differential equations. J.

Comp. Phys., 2019.

[159] Carl Ramey et al. Silicon photonics for artificial intelligence accelera-

tion. In Proc. HotChips, 2020.

[160] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural

Networks. In Proc. ECCV, pages 525–542, 2016.

295

[161] M Reck, A Zeilinger, HJ Bernstein, et al. Experimental realization of

any discrete unitary operator. Physical review letters, 1994.

[162] Angad S. Rekhi, Brian Zimmer, Nikola Nedovic, et al. Analog/mixed-

signal hardware error modeling for deep learning inference. In Proc. DAC,

2019.

[163] Antonio Ribeiro, Alfonso Ruocco, Laurent Vanacker, et al. Demonstra-

tion of a 4×4-port universal linear circuit. Optica, 2016.

[164] C. Roques-Carmes, Y. Shen, and C. Zanoci. Heuristic recurrent algo-

rithms for photonic ising machines. Nat. Commun., 2020.

[165] David Rosenbluth, Konstantin Kravtsov, Mable P. Fok, et al. A high

performance photonic pulse processing device. Opt. Express, 17(25),

Dec 2009.

[166] M. Saberi, R. Lotfi, K. Mafinezhad, and W. A. Serdijn. Analysis

of Power Consumption and Linearity in Capacitive Digital-to-Analog

Converters Used in Successive Approximation ADCs. IEEE TCAS I,

58(8):1736–1748, 2011.

[167] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-

hadran. Low-rank matrix factorization for deep neural network training

with high-dimensional output targets. In Proc. ICASSP, 2013.

296

[168] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bot-

tlenecks. In Proc. CVPR, 2018.

[169] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-

chan, M. Hu, R. S. Williams, and V. Srikumar. ISAAC: A Convolu-

tional Neural Network Accelerator with In-Situ Analog Arithmetic in

Crossbars. In Proc. ISCA, pages 14–26, 2016.

[170] Bhavin J. Shastri, Alexander N. Tait, T. Ferreira de Lima, Wolfram H. P.

Pernice, Harish Bhaskaran, C. D. Wright, and Paul R. Prucnal. Pho-

tonics for Artificial Intelligence and Neuromorphic Computing. Nature

Photonics, 2021.

[171] Yichen Shen, Nicholas C. Harris, Scott Skirlo, et al. Deep learning with

coherent nanophotonic circuits. Nature Photonics, 2017.

[172] Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou,

and F. Gan. A compact and low-loss mmi coupler fabricated with cmos

technology. IEEE Photonics Journal, 2012.

[173] Kyle Shiflett, Dylan Wright, Avinash Karanth, and Ahmed Louri. PIXEL:

Photonic Neural Network Accelerator. In Proc. HPCA, pages 474–487,

2020.

[174] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani.

297

A sparse-group lasso. Journal of Computational and Graphical Statis-

tics, 2013.

[175] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured trans-

forms for small-footprint deep learning. In Proc. NIPS, 2015.

[176] L. Song, X. Qian, H. Li, et al. Pipelayer: A pipelined reram-based

accelerator for deep learning. In Proc. HPCA, 2017.

[177] Chen Sun, Mark T. Wade, Yunsup Lee, Jason S, et al. Single-chip

microprocessor that communicates directly using light. Nature, 2015.

[178] J. Sun, R. Kumar, M. Sakib, et al. A 128 Gb/s PAM4 Silicon Microring

Modulator With Integrated Thermo-Optic Resonance Tuning. Journal

of Lightwave Technology, 2019.

[179] Jie Sun, Ranjeet Kumar, Meer Sakib, Jeffrey B. Driscoll, Hasitha Jay-

atilleka, and Haisheng Rong. A 128 gb/s pam4 silicon microring modu-

lator with integrated thermo-optic resonance tuning. Journal of Light-

wave Technology, 37(1):110–115, 2019.

[180] Mengying Sun, Inci M. Baytas, Liang Zhan, Zhangyang Wang, and Ji-

ayu Zhou. Subspace network: Deep multi-task censored regression for

modeling neurodegenerative diseases. In Proc. KDD, page 2259–2268,

2018.

298

[181] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp:

Sparsified Back Propagation for Accelerated Deep Learning with Re-

duced Overfitting. In Proc. ICML, 2017.

[182] Zhenyu Sun, Wenqing Wu, and Hai (Helen) Li. Cross-Layer Racetrack

Memory Design for Ultra High Density and Low Power Consumption.

In Proc. DAC, 2013.

[183] Febin Sunny, Asif Mirza, Mahdi Nikdast, and Sudeep Pasricha. CrossLight:

A Cross-Layer Optimized Silicon Photonic Neural Network Accelerator.

In Proc. DAC, pages 1069–1074, 2021.

[184] Febin Sunny, Asif Mirza, Mahdi Nikdast, and Sudeep Pasricha. Crosslight:

A cross-layer optimized silicon photonic neural network accelerator. In

Proc. DAC, 2021.

[185] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking

the inception architecture for computer vision. In Proc. CVPR, 2016.

[186] Mohammad H. Tahersima, Keisuke Kojima, Toshiaki Koike-Akino, De-

vesh Jha, BingnanWang, and Chungwei Lin. Deep neural network in-

verse design of integrated photonic power splitters. Sci. Rep., 2019.

[187] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, and Weinan E. Con-

volutional neural networks with low-rank regularization . In Proc. ICLR,

2016.

299

[188] A. N. Tait, M. A. Nahmias, B. J. Shastri, et al. Broadcast and weight:

An integrated network for scalable photonic spike processing. J. Light.

Technol., 2014.

[189] Alexander N. Tait. Quantifying power use in silicon photonic neural

networks. arxiv preprint, arXiv:2108.04819, 2021.

[190] Alexander N. Tait, Thomas Ferreira de Lima, Ellen Zhou, et al. Neu-

romorphic photonic networks using silicon photonic weight banks. Sci.

Rep., 2017.

[191] D. T. H. Tan, A. Grieco, and Y. Fainman. Towards 100 channel dense

wavelength division multiplexing with 100ghz spacing on silicon. Opt.

Express, 2014.

[192] Yehui Tang, Kai Han, Chang Xu, An Xiao, Yiping Deng, Chao Xu,

and Yunhe Wang. Augmented Shortcuts for Vision Transformers. In

Proc. NeurIPS, 2021.

[193] Yingheng Tang, Jichao Fan, Xinwei Li, Jianzhu Ma, Minghao Qi, Cunxi

Yu, and Weilu Gao. Physics-guided and physics-explainable recurrent

neural network for time dynamics in optical resonances. Nat. Compu.

Sci., 2022.

[194] E. Timurdogan et al. An ultralow power athermal silicon modulator.

Nat. Commun., 2014.

300

[195] Erman Timurdogan, Zhan Su, Christopher V. Poulton, et al. AIM Pro-

cess Design Kit (AIMPDKv2.0): Silicon Photonics Passive and Active

Component Libraries on a 300mm Wafer. In Optical Fiber Communica-

tion Conference, 2018.

[196] A. R. Totović, G. Dabos, N. Passalis, A. Tefas, and N. Pleros. Fem-

tojoule per MAC Neuromorphic Photonics: An Energy and Technology

Roadmap. IEEE Journal of Selected Topics in Quantum Electronics,

26(5):1–15, 2020.

[197] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexan-

dre Sablayrolles, and Herve Jegou. Training data-efficient image trans-

formers: distillation through attention. In Proc. ICML, pages 10347–

10357, 2021.

[198] Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong.

Factorized fourier neural operators. In NeurIPS Workshop, 2021.

[199] Rahul Trivedi, Logan Su, Jesse Lu, Martin F. Schubert, and JelenaVuck-

ovic. Data-driven acceleration of photonic simulations. Sci. Rep., 2019.

[200] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jin-

feng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. AutoZOOM: Autoencoder-

Based Zeroth Order Optimization Method for Attacking Black-Box Neu-

ral Networks. In Proc. AAAI, 2019.

301

[201] Wouter Uijens. Activating frequencies: Exploring non-linearities in the

fourier domain. M.S. dissertation, Sch. of Elect. Eng., Math. and

Comp. Sci., Delft Univ. of Technology Netherlands., 2018.

[202] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar,

Blake Hechtman, and Jonathon Shlens. Scaling local self-attention for

parameter efficient visual backbones. In Proc. CVPR, 2021.

[203] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is all you

need. In Proc. NIPS, 2017.

[204] Laurent Vivien, Andreas Polzer, Delphine Marris-Morini, et al. Zero-

bias 40gbit/s germanium waveguide photodetector on silicon. Opt. Ex-

press, 2012.

[205] Hong Wang, Hong Qian, and Yang Yu. Noisy Derivative-Free Optimiza-

tion With Value Suppression. In Proc. AAAI, 2018.

[206] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding

Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid Vision Transformer:

A Versatile Backbone for Dense Prediction without Convolutions. In

Proc. ICCV, 2021.

[207] Wenxiao Wang, Lu Yao, Long Chen, Deng Cai, Xiaofei He, and Wei

Liu. CrossFormer: A Versatile Vision Transformer Based on Cross-scale

Attention. arXiv preprint arXiv:2108.00154, 2021.

302

[208] Y. Wang, W. Wen, B. Liu, et al. Group scissor: Scaling neuromorphic

computing design to large neural networks. In Proc. DAC, 2017.

[209] Yitu Wang, Fan Chen, Linghao Song, et al. REBOC: Accelerating

Block-Circulant Neural Networks in ReRAM. In Proc. DATE, 2020.

[210] Yue Wang, , Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan

Lin, and Zhangyang Wang. E2-Train: Training State-of-the-art CNNs

with Over 80% Less Energy. In Proc. NeurIPS, 2019.

[211] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan

Cheng, Hao Shen, , and Huaxia Xia. End-to-end video instance seg-

mentation with transformers. In Proc. CVPR, 2021.

[212] Zi Wang, Lorry Chang, Feifan Wang, Tiantian Li, and Tingyi Gu. In-

tegrated photonic metasystem for image classifications at telecommuni-

cation wavelength. Nature Communications, 2022.

[213] Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar,

and Sally M. Benson. U-fno: an enhanced fourier neural operator based-

deep learning model for multiphase flow. arXiv preprint, arXiv:2109.03697,

2021.

[214] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learn-

ing structured sparsity in deep neural networks. In Proc. NIPS, 2016.

[215] Gordon Wetzstein, Aydogan Ozcan, Sylvain Gigan, Shanhui Fan, Dirk

Englund, Marin Soljačić, Cornelia Denz, , David A. B. Miller, and

303

Demetri Psaltis. Inference in artificial intelligence with deep optics

and photonics. Nature, 2020.

[216] Simon Wiedemann, Temesgen Mehari, Kevin Kepp, and Wojciech Samek.

Dithered backprop: A sparse and quantized backpropagation algorithm

for more efficient deep neural network training. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops, 2020.

[217] Ian A. D. Williamson, Tyler W. Hughes, Momchil Minkov, Ben Bartlett,

Sunil Pai, and Shanhui Fan. Reprogrammable electro-optic nonlinear

activation functions for optical neural networks. JSTQE, 26(1):1–12,

2020.

[218] Ian A. D. Williamson, Tyler W. Hughes, Momchil Minkov, et al. Repro-

grammable electro-optic nonlinear activation functions for optical neural

networks. JSTQE, 2019.

[219] Scott Wisdom, Thomas Powers, John R. Hershey, et al. Full-capacity

unitary recurrent neural networks. In Proc. NIPS, 2016.

[220] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun,

Yiming Wu, Yuandong Tian, et al. FBNet: Hardware-aware Effi-

cient Convnet Design via Differentiable Neural Architecture Search. In

Proc. CVPR, 2019.

304

[221] Changming Wu, Heshan Yu, Seokhyeong Lee, Ruoming Peng, Ichiro

Takeuchi, and Mo Li. Programmable phase-change metasurfaces on

waveguides for multimode photonic convolutional neural network. Na-

ture Communications, 2021.

[222] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel

Image Dataset for Benchmarking Machine Learning Algorithms. CoRR,

abs/1708.07747, 2017.

[223] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and

Ross Girshick. Early Convolutions Help Transformers See Better. In

Proc. NeurIPS, 2021.

[224] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Al-

varez, and Ping Luo. SegFormer: Simple and Efficient Design for Se-

mantic Segmentation with Transformers. In Proc. NeurIPS, 2021.

[225] Shaofu Xu, Jing Wang, Rui Wang, Jiangping Chen, and Weiwen Zou.

High-accuracy optical convolution unit architecture for convolutional

neural networks by cascaded acousto-optical modulator arrays. Opt.

Express, 2019.

[226] Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-scale conv-

attentional image transformers. In Proc. ICCV, 2021.

[227] Xingyuan Xu, Mengxi Tan, Bill Corcoran, Jiayang Wu, Andreas Boes,

Thach G. Nguyen, Sai T. Chu, Brent E. Little, Damien G. Hicks, Roberto

305

Morandotti, Arnan Mitchell, and David J. Moss. 11 TOPS photonic

convolutional accelerator for optical neural networks. Nature, 2021.

[228] Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Yingyong Qi,

Yiran Chen, Weiyao Lin, and Hongkai Xiong. TRP: Trained Rank

Pruning for Efficient Deep Neural Networks. In Proc. IJCAI, pages

977–983, 2020.

[229] Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel Hu, Ang Li,

Hai Li, and Yiran Chen. Learning low-rank deep neural networks via

singular vector orthogonality regularization and singular value sparsifi-

cation. In Proc. CVPR Workshops, 2020.

[230] Zhoufeng Ying, Chenghao Feng, Zheng Zhao, Shounak Dhar, et al.

Electronic-photonic arithmetic logic unit for high-speed computing. Na-

ture Communications, 2020.

[231] Zhoufeng Ying, Chenghao Feng, Zheng Zhao, et al. Integrated multi-

operand electro-optic logic gates for optical computing. Appl. Phys.

Lett., 2019.

[232] Zhoufeng Ying, Chenghao Feng, Jiaqi Gu Zheng Zhao, et al. Sequential

logic and pipelining in chip-based electronic-photonic digital computing.

IEEE Photonics Journal, 2020.

[233] J. Yu and X. Zhou. Ultra-high-capacity dwdm transmission system for

100g and beyond. IEEE Communications Magazine, 2010.

306

[234] Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan Yuille, and Wei

Shen. Glance-and-Gaze Vision Transformer. arXiv preprint arXiv:2106.02277,

2021.

[235] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang

Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-

to-token ViT: Training vision transformers from scratch on imagenet.

arXiv preprint arXiv:2101.11986, 2021.

[236] Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin

Chen, and Jingdong Wang. HRFormer: High-Resolution Transformer

for Dense Prediction. In Proc. NeurIPS, 2021.

[237] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk

Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train

strong classifiers with localizable features. In Proc. ICCV, 2019.

[238] H. Zhang, M. Gu, X. D. Jiang, J. Thompson, H. Cai, S. Paesani, R. San-

tagati, A. Laing, Y. Zhang, M. H. Yung, Y. Z. Shi, F. K. Muhammad,

G. Q. Lo, X. S. Luo, B. Dong, D. L. Kwong, L. C. Kwek, and A. Q. Liu.

An optical neural chip for implementing complex-valued neural network.

Nature Communications, 2021.

[239] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, , and David Lopez-

Paz. mixup: Beyond empirical risk minimization. arXiv preprint

arXiv:1710.09412, 2017.

307

[240] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei

Zhang, and Jianfeng Gao. Multi-scale vision longformer: A new vision

transformer for high-resolution image encoding. In Proc. ICCV, 2021.

[241] Tian Zhang et al. Efficient training and design of photonic neural net-

work through neuroevolution. arXiv, 2019.

[242] Tian Zhang, Jia Wang, Yihang Dan, Yuxiang Lanqiu, Jian Dai, Xu Han,

Xiaojuan Sun, and Kun Xu. Efficient training and design of photonic

neural network through neuroevolution. Optics Express, 2019.

[243] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan

Fardad, and Yanzhi Wang. A systematic dnn weight pruning framework

using alternating direction method of multipliers. In Proc. ECCV, 2018.

[244] Y. Zhang, X. Wang, and E. G. Friedman. Memristor-based circuit

design for multilayer neural networks. IEEE TCAS I, 2018.

[245] Yang Zhang, Amir Hosseini, Xiaochuan Xu, David Kwong, and Ray T.

Chen. Ultralow-loss silicon waveguide crossing using bloch modes in

index-engineered cascaded multimode-interference couplers. Opt. Lett.,

2013.

[246] Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. SpArch:

Efficient Architecture for Sparse Matrix Multiplication. In Proc. HPCA,

2020.

308

[247] Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan.

Theoretical properties for neural networks with weight matrices of low

displacement rank. In Proc. ICML, 2017.

[248] Pu Zhao, Pin-Yu Chen, Siyue Wang, and Xue Lin. Towards query-

efficient black-box adversary with zeroth-order natural gradient descent.

In Proc. AAAI, 2020.

[249] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru

Zhang. Building efficient deep neural networks with unitary group con-

volutions. In Proc. CVPR, 2019.

[250] Yang Zhao, Xiaohan Chen, Yue Wang, Chaojian Li, Haoran You, Yong-

gan Fu, Yuan Xie, Zhangyang Wang, and Yingyan Lin. SmartExchange:

Trading Higher-cost Memory Storage/Access for Lower-cost Computa-

tion . In Proc. ISCA, 2020.

[251] Yang Zhao, Chaojian Li, Yue Wang, Pengfei Xu, Yongan Zhang, and

Yingyan Lin. Dnn-chip predictor: An analytical performance predictor

for dnn accelerators with various dataflows and hardware architectures.

In Proc. ICASSP, pages 1593–1597, 05 2020.

[252] Zheng Zhao, Jiaqi Gu, Zhoufeng Ying, et al. Design technology for

scalable and robust photonic integrated circuits. In Proc. ICCAD, 2019.

[253] Zheng Zhao, Derong Liu, Meng Li, et al. Hardware-software co-design

of slimmed optical neural networks. In Proc. ASPDAC, 2019.

309

[254] Qilin Zheng, Zongwei Wang, Zishun Feng, Bonan Yan, Yimao Cai,

Ru Huang, Yiran Chen, Chia-Lin Yang, and Hai Helen Li. Lattice:

An ADC/DAC-less ReRAM-based Processing-In-Memory Architecture

for Accelerating Deep Convolution Neural Networks. In Proc. DAC,

pages 1–6, 2020.

[255] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang.

Random erasing data augmentation. In Proc. AAAI, 2020.

[256] Hailong Zhou, Yuhe Zhao, Xu Wang, Dingshan Gao, Jianji Dong, and

Xinliang Zhang. Self-learning photonic signal processor with an optical

neural network chip. arXiv, 2019.

[257] Hailong Zhou, Yuhe Zhao, Gaoxiang Xu, Xu Wang, Zhipeng Tan, Jianji

Dong, and Xinliang Zhang. Chip-Scale Optical Matrix Computation for

PageRank Algorithm. JSTQE, 2020.

[258] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng

Zou. Dorefa-net: Training low bitwidth convolutional neural networks

with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[259] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained

ternary quantization. In Proc. ICLR, 2017.

[260] H. H. Zhu, J. Zou, H. Zhang, Y. Z. Shi, S. B. Luo, et al. Space-efficient

optical computing with an integrated chip diffractive neural network.

Nature Communications, 2022.

310

[261] Ying Zhu, Grace Li Zhang, Bing Li, et al. Countering Variations and

Thermal Effects for Accurate Optical Neural Networks. In Proc. IC-

CAD, 2020.

[262] Farzaneh Zokaee, Qian Lou, Nathan Youngblood, et al. LightBulb: A

Photonic-Nonvolatile-Memory-based Accelerator for Binarized Convolu-

tional Neural Networks. In Proc. DATE, 2020.

311

Index

Abstract, vi
Acknowledgments, iv
Appendices, 255

Bibliography, 311

312

Vita

Jiaqi Gu received his B.Eng. from Fudan University, Shanghai, China,

in 2018. He started his Ph.D. program at the University of Texas at Austin

in 2018, with research advisor David Z. Pan and co-advisor Ray T. Chen. He

has interned at Meta reality labs, Austin in 2021 summer, and Nvidia, Austin

in 2022 summer.

Jiaqi Gu’s research interests include emerging post-Moore hardware

design for efficient computing, hardware/software co-design, photonic com-

puting, and AI/ML algorithms. He has received the Best Paper Award at the

ACM/IEEE Asian and South Pacific Design Automation Conference (ASP-

DAC) in 2020, the Best Paper Finalist at the ACM/IEEE Design Automation

Conference (DAC) in 2020, the Best Poster Award at the NSF Workshop for

Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous

On-Device Intelligence in 2020, the Best Paper Award at the IEEE Transac-

tion on Computer-Aided Design of Integrated Circuits and Systems (TCAD)

in 2021, the ACM Student Research Competition Grand Finals First Place in

2021, and Winner of the Robert S. Hilbert Memorial Optical Design Compe-

tition in 2022.

Permanent address: jqgu@utexas.edu

313

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

314

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Photonic Computing Background and Basics
	Photonic AI Literature Review and Challenges
	Overview of this Dissertation

	Chapter 2. Hardware/Software Co-Design of Photonic Neural Network Accelerator
	Introduction
	FFT-ONN: Area-Efficient Butterfly-style Optical Neural Networks
	Preliminaries
	Proposed Photonic MLP with FFT-inspired Butterfly Transforms
	Photonic CNN with Learnable Frequency-domain Transforms
	Experimental Results
	Experimental Demonstration with Butterfly-style Photonic Neural Chip Tape-out
	Summary

	SqueezeLight: A Multi-Operand Ring-Based ONN with Cross-Layer Scalability
	Preliminaries
	Proposed MORR-based ONN Architecture
	Hardware Feasibility and Efficiency
	Extension to MORR-based Separable CNN with Augmented Trainability
	Experimental Results
	Summary

	O2NN: Optical Neural Networks with Differential Detection-Enabled Optical Operands
	Preliminaries
	Proposed O2NN Architecture
	Experimental Results
	Summary

	Towards Memory-Efficient Photonic Neural Accelerators via Multi-Level in-situ Generation
	Preliminary
	Proposed Memory-Efficient Architecture Design
	Experimental Results
	Summary

	Chapter 3. In-situ Training for Self-Learnable Photonic Neural Engines
	Introduction
	FLOPS: Efficient On-Chip Learning for ONNs Through Stochastic Zeroth-Order Optimization
	Preliminaries
	On-Chip ONN Training based on Zeroth-order Gradient Estimation
	Robust ONN Learning with in situ Thermal Variation
	Experimental Results
	Summary

	MixedTrain: Power-Aware Sparse Zeroth-Order Optimization for ONN On-Chip Learning
	Preliminaries
	Problem Formulation and Analysis
	Proposed Power-Aware Mixed-Training Framework
	Experimental Results
	Summary

	L2ight: Enabling Scalable ONN On-Chip Learning via Efficient in-situ Subspace Optimization
	Preliminaries
	Synergistic ONN On-Chip Learning Framework L2ight
	Understanding the ONN On-Chip Learning Problem
	Identity Calibration (IC): Variation-Agnostic Circuit State Preparation
	Parallel Mapping (PM): Alternate Projection-based Model Deployment
	Subspace Learning: Hardware-Aware Multi-Level Sparse Training
	Complexity Analysis of Three Stages in L2ight
	Experimental Results
	Ablation Studies and Discussion
	Summary

	Chapter 4. AI-Assisted Intelligent Photonic Integrated Circuit Design Automation
	Introduction
	NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric Photonic Device Simulation
	Preliminaries
	Proposed Optical Simulation Framework NeurOLight
	Experimental Results
	Summary

	ADEPT: Automatic Differentiable Design of Photonic Tensor Cores
	Preliminaries
	Automatic Photonic Tensor Core Design Framework ADEPT
	Experimental Results
	Summary

	Chapter 5. Conclusion and Future Work
	Appendices
	Appendices for Introduction
	ONN Principles

	Appendices for L2ight
	Optical Circuit Non-ideality
	Intractable Gradients for MZI Rotations
	Detailed Description of the Proposed Parallel Mapping Algorithm
	Prove of Unbiased Gradient Approximation with Feedback and Feature Sampling
	Training Details
	MZI Array Scaling
	Hardware Cost Evaluation

	Appendices for NeurOLight
	Optical Field Simulation
	Dataset Generation
	Training Settings
	Model Architectures

	Bibliography
	Index

	Vita

