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Abstract: We deploy a compact butterfly-style photonic-electronic neural chip on ResNet-20 and 
achieve > 85% measured accuracy on the CIFAR-10 dataset with only 3-bit weight programming 
resolutions, showing its practicality in implementing complicated deep learning tasks. 
OCIS codes: (200.4700) Optical neural systems; (200.4260) Neural networks; (130.3120) 
Integrated optics devices 

1. Introduction
The optical neural network (ONN) is a promising analog artificial intelligence (AI) accelerator that utilizes some
unique features of light, such as low latency, low power consumption, and high parallelism. Earlier work has presented
various high-performance integrated ONNs to implement general matrix multiplications (GEMMs) in deep neural
network (DNN) models [1–3]. However, GEMM-based ONNs require unnecessarily large area cost and high control
complexity. In our previous work [4], we devise an optical subspace neural network architecture (OSNN) (Fig. 1(a))
based on butterfly-style photonic meshes, which trades the universality of weight representation for lower optical
component usage, area cost, and energy consumption. We experimentally demonstrate the utility of OSNN on our
butterfly-style photonic neural chip (BPNC) on the MNIST dataset with a measured accuracy of 94.16%. After proving
the practicality of OSNN on simple hand-written digit recognition tasks, it is interesting to investigate whether our
OSNN with restricted matrix parameter space has enough model expressivity to implement more complicated deep
learning tasks.

In this study, we deploy our 4 × 4 BPNC (shown in Fig. 1(b)) in large DNN models, e.g., ResNet-20 with 0.27 
million parameters, to evaluate the task performance of OSNN on more complicated datasets such as CIFAR-10. Our 
initial training results show that our BPNC achieves a measured accuracy of 85.12% under only a 3-bit weight 
programming resolution on the CIFAR-10 dataset, which is comparable to the accuracy of a 64-bit computer. This 
work proves that our hardware-efficient OSNN has enough expressivity to implement complicated deep learning tasks 
in the future. 

Fig. 1. Schematic of the optical subspace neural network (OSNN) architecture. (a) shows a �-input, �-output layer which consists of �∗ = �
�
 

projection units (� units), �∗ = �
�

 butterfly-style transform units (� units), �∗ × �∗ diagonal matrix units (� units), and an electrical � unit to 
implement activation functions. (b) shows the photograph of our packaged 4 × 4 butterfly-style photonic-electronic neural chip (BPNC). (c) shows 
the schematic of the 4 × 4 BPNC under the multi-wavelength-input mode, where different photonic circuit units (�/�/�) are shown. 
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2. Optical subspace neural network architecture
The schematic of the OSNN architecture is shown in Fig. 1, where an � × � weight matrix in one fully-connected
layer is partitioned into ��

�
 � × � (� = 4 or 8) submatrix units. Shown in Fig. 1(c), each sub-matrix unit is composed

of two � × � butterfly-style photonic meshes (P and B units) and a diagonal matrix unit (� unit) consisting of a column 
of � modulators. Each B/P unit is shared by multiple � units, and only �

�
 � units,  �

�
 � units are required to implement 

an �-input, �-output layer, resulting in a smaller chip footprint than in previous work [5]. Moreover, only the ��
�

 
active photonic devices in the � unit are trainable. The total number of trainable components is then � − 1 times 
smaller than ONNs designed for GEMMs [2], significantly reducing the weight loading cost and reprogramming 
complexity.   

Our OSNN architecture supports both single-wavelength and multi-wavelength optical inputs, and each 4 × 4 ��� 
block can realize 64.4% fidelity in expressing general 4 × 4 matrices in single-wavelength mode and  92.2% fidelity 
in expressing arbitrary all-positive or all-negative 4 × 4 matrices. Details of our OSNN architecture are disclosed 
in [4]. 

3. Results
In this work, we deploy our BPNC on ResNet-20 to implement image classification tasks. Large tensor operations in
ResNet-20 are partitioned into 4 × 4 blocks and mapped onto our BPNC. In the testing, the input lights with different
wavelengths (1548, 1549, 1550, 1551 nm) are generated by a tunable laser. A multi-channel DAC is required to
program the input and weight signals of the BPNC. We then use two 2-channel oscilloscopes to read the output signals.
The measurement data is modeled and processed using our hardware-aware on-chip training framework [4]. Finally,
we offload other functions, such as nonlinear activation and partial accumulations in computers to implement the DNN
model.

 The testing results are shown in Fig. 2, which shows that we can achieve a measured accuracy of 85.12% under a 
3-bit weight control resolution, which is close to the accuracy of a 64-bit computer (~90%). We will further improve
the task performance by optimizing our training framework. We will show more benchmarking results on different
DNN models and complicated datasets in the presentation.

Fig. 2. Testing results of � × � BPNC using ResNet-20 model on the CIFAR-10 dataset. The BPNC is working under multi-wavelength mode 
with a 3-bit weight control resolution. (a) The confusion matrix of our benchmarking results shows a measured accuracy of 85.12%. (b) shows 
some output probability distribution of three images of different classes.  

     In conclusion, we deploy our 4 × 4 BPNC on ResNet and evaluate its performance on the CIFAR-10 dataset. Our 
OSNN architecture and hardware-aware DNN deployment approach provide a synergistic solution to implement 
complicated deep learning tasks with similar task performance but with lower component usage, smaller footprint, 
and lower power consumption than ONNs architectures designed for GEMMs. 
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