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Abstract— In this paper, we review the progress of integrated 

photonics in both digital computing and analog neuromorphic 

computing. We introduce methods to design scalable, area-

efficient, and energy-efficient integrated photonic computing 

chips for computing and artificial intelligence acceleration with 

experimental demonstrations.  
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neuromorphic computing 

I. INTRODUCTION  

Integrated photonics is a promising technology for next-
generation computing because of the essential characteristics of 
light, including low latency, high bandwidth, and low power 
consumption[1,2]. A variety of compact, energy-efficient, and 
high-speed photonic devices have been demonstrated and can be 
found in component libraries at foundries. Current foundries 
also enable the co-integration of silicon-based electrical and 
photonic circuits on the same interposer or the same substrate to 
implement complicated computing tasks. In the past decades, 
numerous integrated photonic chips have been investigated for 
both digital and analog computing [1-7]. 

In this presentation, we will guide the interested audience on 
a journey toward next-generation optical processing platforms 
with a comprehensive introduction to optical devices, photonic 
integrated circuits, hardware-software co-design, hardware 
realization, and experimental demos of optical computing. We 
will also review efforts to improve the scalability, area 
efficiency, and energy efficiency of integrated photonic 
computing chips for next-generation AI accelerators. 

II. OPTICAL DIGITAL COMPUTING  

In optical digital computing, people use EO modulators and 
other components as basic logic gates to implement 
combinational logic functions such as AND, OR, and XOR 

operations. Both the input and output data are binary in optical 
digital computing systems. Similar to electrical digital logic 
circuits, the precision of optical digital computing circuits is 
determined by the bit number and is independent of the scale of 
the circuits.  

Direct-logic-based electronic-photonic computing 
architecture, which utilizes the advantages of electronics and 
photonics, is widely explored in optical digital computing. A 
typical example is the proposed electronic-photonic arithmetic 
logic unit (EPALU), which includes the experimental 
demonstration of an optical full adder at 20 Gb/s [1]. Other logic 
circuits in EPALU, such as digital comparators [3] and decoders 
[4], are also designed with high-speed (20 Gb/s) experimental 
demonstration. These integrated photonic digital computing 
circuits are scalable and capable of processing larger bit-width 
inputs, such as 64 or 128-bit data. Additionally, the building 
blocks of the EPALU incorporate wavelength-division 
multiplexing (WDM) to improve the area efficiency of optical 
digital computing circuits. Performance analysis shows the 
EPALU can be operated at over 20 Gb/s with one to two orders 
of magnitudes better energy efficiency than transistor-based 
electrical counterparts. 

Fig. 1 Schematic of electronic-photonic ALU and its building 
blocks such as (b) optical full adder [3], (c) comparator [4] and 
decoder [5].  
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III. OPTICAL ANALOG NEUROMORPHIC COMPUTING 

In analog optical AI accelerators, people manipulate the 
transfer matrix of photonic integrated circuits (PICs) to 
implement matrix-vector multiplications (MVMs), which are 
fundamental operations in artificial intelligence and signal 
processing. Compared to optical digital computing chips, optical 
analog computing chips have less precision but can achieve 
better parallelism and area efficiency than digital ones. As a 
result, analog optical computing chips are designed for 
applications that do not require high precision, e.g., 
neuromorphic computing tasks. Based on the mechanism of 
integrated photonic tensor cores (PTCs) are generally 
categorized into coherent and incoherent ONNs. Coherent 
PTCs, e.g., MZI-based PTCs (Fig. 1(a)), utilize singular-vector-
decomposition (SVD) to implement matrix multiplications [1]. 
Incoherent ONNs such as microring-based PTCs first use EO 
modulators to implement dot products in parallel and then 
combine the signals on one optical path and accumulate the dot 
product results after photodetection [5]. After the weight 
parameters are mapped on the integrated photonic tensor cores 
(PTCs) by programming active components such as MZI or 
microring modulators, an integrated PTC can implement parallel 
matrix multiplications at the speed of light with near-zero energy 
consumption. Therefore, PTCs can achieve orders of 
magnitudes better than their electrical counterparts in both 
latency and energy efficiency [6]. 

Fig. 2 Integrated photonic chips for analog AI acceleration. (a) 
and (b) show an MZI-based [1] and a microring-based [5] 
photonic tensor cores (PTCs) designed for general matrix 
multiplications (GEMMs). PTCs shown in (c) and (d) are 
designed to improve optical AI accelerators' area and energy 
efficiency. (c) uses a compact butterfly-style photonic mesh to 
reduce the number of optical components from the circuit level 
[7]. (d) uses a customized MZI-based multi-operand optical 
neuron to improve the efficiency of implementing tensor 
operations from the device level [8]. 

 To maximize the performance benefit of photonic 
computing in AI acceleration, scalable and efficient photonic 
tensor core designs are in high demand to implement large-size 
tensor operations (e.g., 128 × 128). The majority of the analog 
photonic AI chips are designed to implement general matrix 
multiplications, leading to unnecessarily large area costs and 
high control complexity. For instance, MZI-based PTC requires 
𝑂(𝑚2 + 𝑛2) MZIs and ~(𝑚 + 𝑛) cascaded MZIs in one optical 
path to implementing a 𝑛 -input, 𝑚 -output layer, consuming 
huge area cost and unacceptable high propagation loss to 
implement large tensor operations (e.g., 128 × 128 ). Both 
circuit- and device-level optimizations have been explored to 
enhance the scalability of ONNs. Circuit-level approaches, such 
as the butterfly-style circuit mesh, have been explored to reduce 
hardware usage [7]. Moreover, compact customized device-
level photonic tensor cores, e.g., multi-operand optical neurons, 
have been proposed to significantly reduce the device footprint 
and improve the hardware efficiency of tensor operations [8]. 
Using hardware-software co-design and hardware-aware 
training approaches, these optimized PTCs can achieve one to 
orders of magnitudes smaller footprint and lower propagation 
loss compared to PTCs designed GEMMs with similar task 
performance. More details about the designs and experimental 
demonstrations of these scalable hardware-efficient PTCs will 
be provided in the presentation. 

IV. CONCLUSION 

In conclusion, we have proposed the progress of integrated 
photonics in digital computing and analog neuromorphic 
computing, showing their potential in next-generation 
computing. We also introduce efforts to improve the scalability, 
area efficiency, and energy efficiency of integrated photonic 
computing chips to push the limits of the practical deployment 
of photonic AI accelerators. 
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